

Биологические эффекты излучения

Ранние наблюдения за эффектами ионизирующего излучения

- ✓ 1895 Открытие Рентгеном X-лучей
- ✓ 1896 Первое сообщение об ожоге кожи
- ✓ 1896 Первое использование X-лучей в лечении рака
- ✓ 1896 Беккерель: открытие радиоактивности
- ✓ 1897 Сообщение о первом случае повреждения кожи
- 1902 Первое сообщение, рентгеновские лучи вызывают рак
- 1911 Первое сообщение о заболевании лейкемией и раком легких в результате профессионального облучения
- ✓ 1911 Сообщается о 94 случаях опухолей в Германии (50 из них радиологи)

Биологические последствия облучения

При облучении живой материи наблюдаются определенные биологические последствия.

Биологический эффект – результат поглощения энергии излучения атомами и молекулами, составляющими клетки и ткани.

В радиобиологии выполняется общий принцип Гроттгуса, согласно которому только та часть энергии излучения может вызвать изменения в веществе, которая поглощается этим веществом; отраженная или проходящая энергия не оказывает никакого действия.

«Радиобиологический парадокс»

Облучение человека дозой 10 Гр приводит к смерти в течение 10-20 суток.

Доза 10 Гр (10 Дж/кг) приводит к поглощению 1 граммом ткани 10⁵ эрг энергии излучения, что эквивалентно:

- □ энергии теплового излучения, необходимой для повышения температуры тела на 0,002°C
- □ энергии, выделяющейся при полном торможении тела, двигающегося со скоростью 4,5 м/с

Поглощенная доза

Поглощенная доза (D) - величина энергии ионизирующего излучения, переданная веществу:

$$D = \frac{\overline{de}}{dm} ,$$

где de - средняя энергия, переданная ионизирующим излучением веществу, находящемуся в элементарном объеме, а dm - масса вещества в этом объеме.

В единицах СИ поглощенная доза измеряется в джоулях, деленных на килограмм (Дж/кг), и имеет специальное название - грей (Гр)

Мощность поглощенной дозы

Мощность поглощенной дозы D' – частное от деления dD на dt, где dD – приращение поглощенной дозы за интервал времени dt:

$$D' = \frac{dD}{dt}$$

Специальной единицей мощности поглощенной дозы служит частное от деления грея на единицу времени (Гр/с, Гр/ч)

Доза эквивалентная

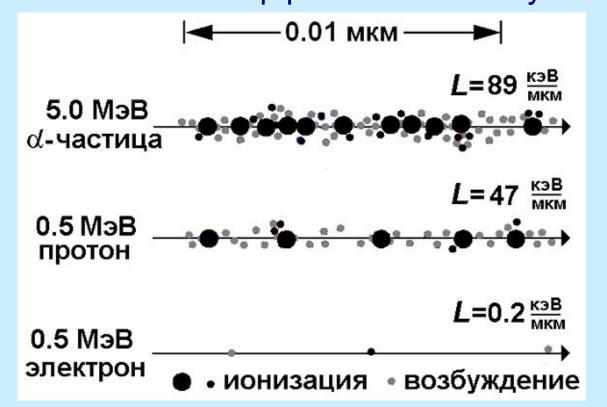
Доза эквивалентная ($H_{T,R}$) - поглощенная доза в органе или ткани, умноженная на соответствующий взвешивающий коэффициент для данного вида излучения, W_{R} :

$$H_{T,R} = W_R \times D_{T,R},$$

где D_{т,R} - средняя поглощенная доза в органе или ткани T, а W_R - взвешивающий коэффициент для излучения R.

Единицей эквивалентной дозы является зиверт (Зв).

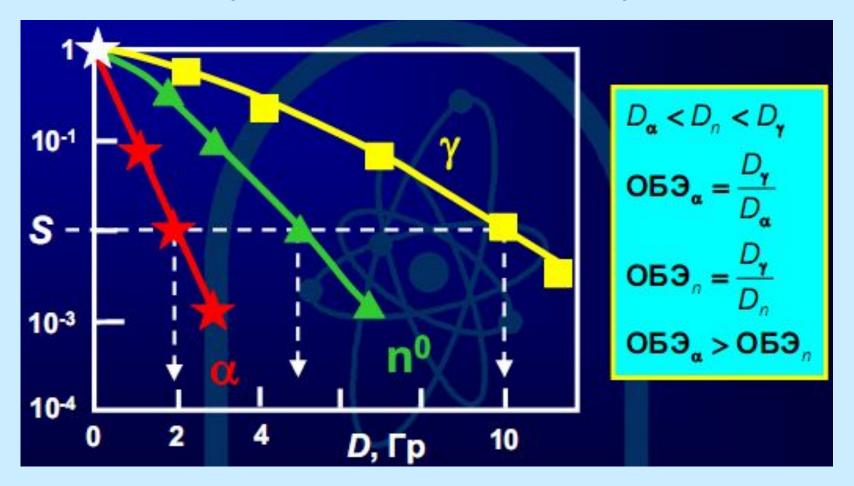
Взвешивающие коэффициенты


Взвешивающие коэффициенты для отдельных видов излучения при расчете эквивалентной дозы (W_R) - используемые в радиационной защите множители поглощенной дозы, учитывающие относительную эффективность различных видов излучения в индуцировании биологических эффектов

Фотоны любых энергий	1
Электроны и мюоны любых энергий	1
Нейтроны с энергией менее 10 кэВ	5
от 10 кэВ до 100 кэВ	10
от 100 кэВ до 2 МэВ	20
от 2 МэВ до 20 МэВ	10
более 20 МэВ	5
Протоны с энергией более 2 МэВ, кроме протонов отдачи	5
Альфа-частицы, осколки деления, тяжелые ядра	20

Воздействие на вещество различных типов излучений

Из-за того, что разные типы ионизирующего излучения обладают разной линейной передачей энергии (ЛПЭ), одной и той же поглощённой дозе соответствует разная биологическая эффективность излучения.



L=dE/dl.

Биологическое действие ионизирующих излучений

Относительная биологическая эффективность (ОБЭ) (коэффициента качества)

ДОЗА ЭФФЕКТИВНАЯ

Доза эффективная (Е) - величина, используемая как мера риска возникновения отдаленных последствий облучения всего тела человека и отдельных его органов и тканей с учетом их радиочувствительности. Она представляет сумму произведений эквивалентной дозы в органах и тканях на соответствующие взвешивающие коэффициенты:

$$E = \Sigma_T W_T \times H_T$$
 , где

H_T - эквивалентная доза в органе или ткани T, W_T - взвешивающий коэффициент для органа или ткани T.

Единица эффективной дозы - зиверт (Зв).

Взвешивающие коэффициенты

Взвешивающие коэффициенты для тканей и органов при расчете эффективной дозы (W_т) - множители эквивалентной дозы в органах и тканях, используемые в радиационной защите для учета различной чувствительности разных органов и тканей в возникновении стохастических эффектов радиации:

```
Гонады 0,08 (0,20- НРБ-99)
Костный мозг (красный) 0,12
Толстый кишечник 0,12
Легкие 0,12
Желудок 0,12
Мочевой пузырь 0,05
Грудная железа 0,12 (0,05- НРБ-99)
Печень 0,05
Пищевод 0,05
Щитовидная железа 0,05
Кожа 0,01
Клетки костных поверхностей
                              0.01
Остальное 0,12 (0,05- НРБ-99)
```


Эффекты от радиации

Опасность или потенциальная опасность зависит от:

- □ типа радиации
- 🛮 дозы и мощности дозы
- 🛘 типа клетки

Радиочувствительность клеток

- □ Более чувствительны:
 - кроветворные органы
 - стенки кишок
 - базальные слои кожи
- □ Менее чувствительны:
 - мускулы
 - нервные ткани
 - клетки мозга

Опасность для клеток

Десятки Зв

клетки 'убиты' невозможность нормального функционирования

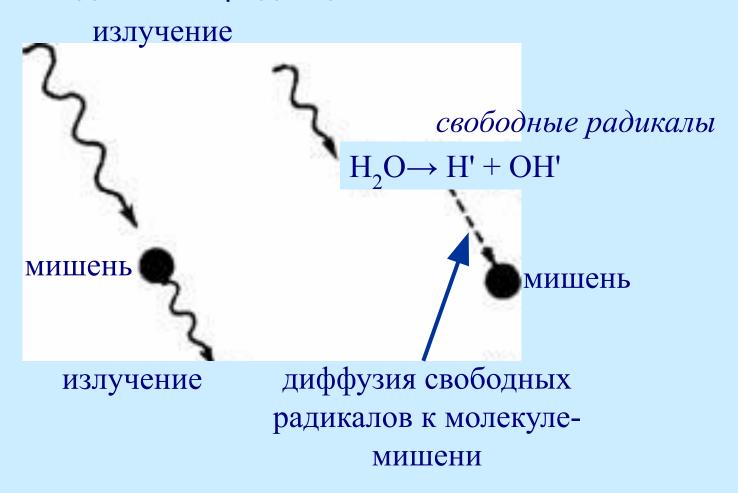
0.5 - 10 Зв

клетки теряют способность к делению остаются еще распознаваемыми могут выполнять другие функции

Менее, чем 0.5 Зв

Можно видеть повреждения отдельных клеток

Биологическое действие ионизирующих излучений


Биологическое действие ионизирующего излучения условно можно подразделить на :

- первичный этап являющийся пусковым механизмом , запускающим многообразные процессы, происходящие в биологическом объекте;
- вторичный этап нарушение функций целого организма как следствие первичных процессов.

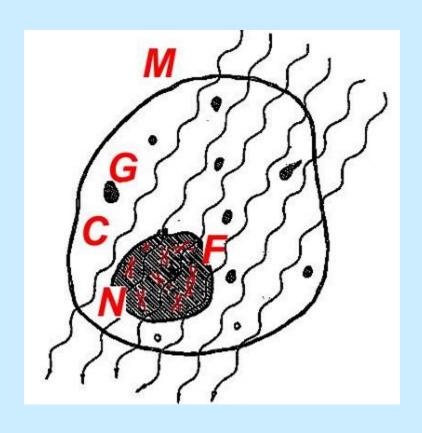
Прямое и косвенное действие ионизирующего излучения

Различают два механизма, обозначаемые как прямое и косвенное действие радиации.

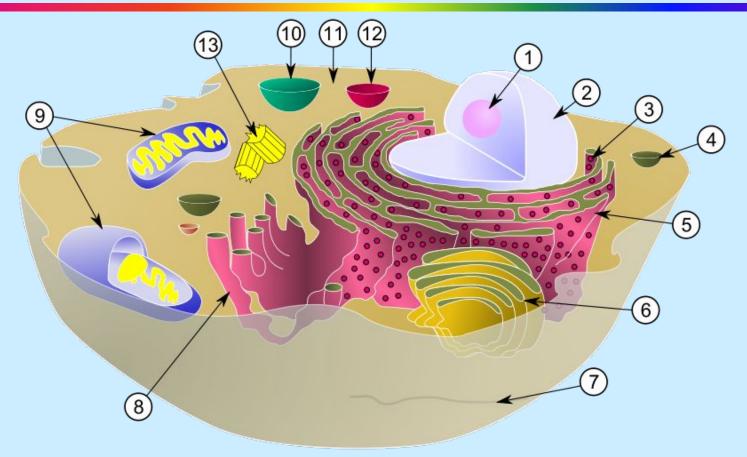

Стадии радиобиологических процессов

Название стадии	Время, с	Основные процессы
Физическая и физико- химическая	10 ⁻¹⁸ – 10 ⁻⁸	Ионизация, образование соединений с ненасыщенной химической связью (радикалов)
Химическая	10 ⁻¹⁴ – 10 ⁻⁴	Образование первичных повреждений ДНК (одно-двухнитиевые разрывы) в следствии реакции со свободными радикалами
Биохимическая (субклеточная)	10 ⁻⁴ — 10 ⁵ (~28ч)	Восстановление (репарация) повреждений. Образование нерепарируемых повреждений (мутаций) в результате их взаимодействия
Биологическая (клеточная)	10 ³ — 10 ⁸ (17 мин – 3 г.)	Гибель клеток или изменение их свойств в результате мутации

Клеточные эффекты излучения


Красный костный мозг

Кожа



Клетка живой ткани

Строение клетки

Схематическое изображение животной клетки, цифрами отмечены некоторые субклеточные компоненты: (1) ядрышко, (2) клеточное ядро, (3) рибосома, (4) везикула, (5) шероховатый эндоплазматический ретикулум (ЭР), (6) Аппарат Гольджи, (7) цитоскелет, (8) гладкий ЭР, (9) митохондрия, (10) вакуоль, (11) цитоплазма, (12) лизосома, (13) центриоль

Строение хромосомы

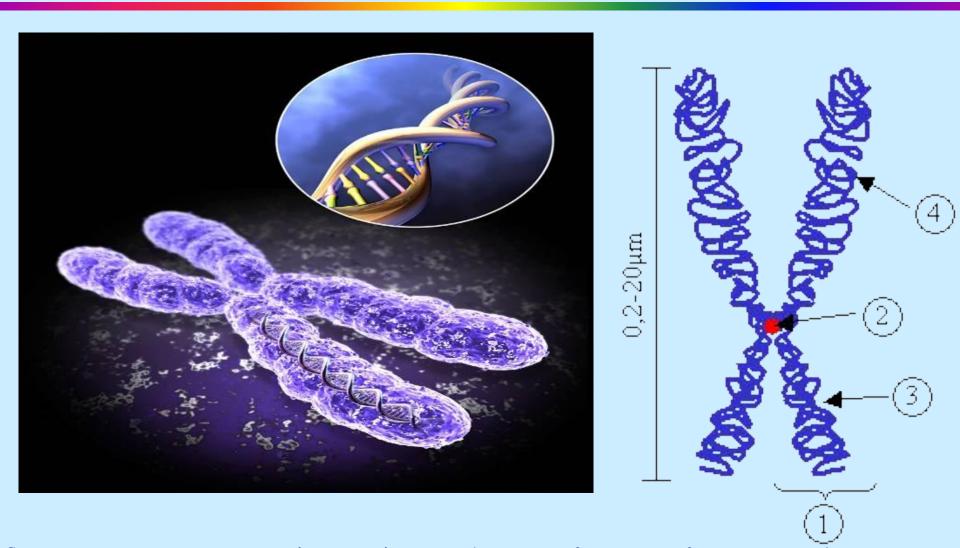
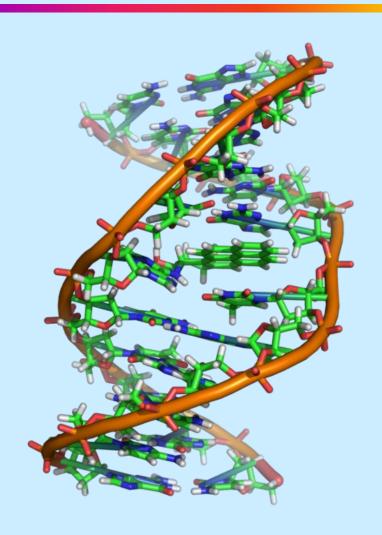
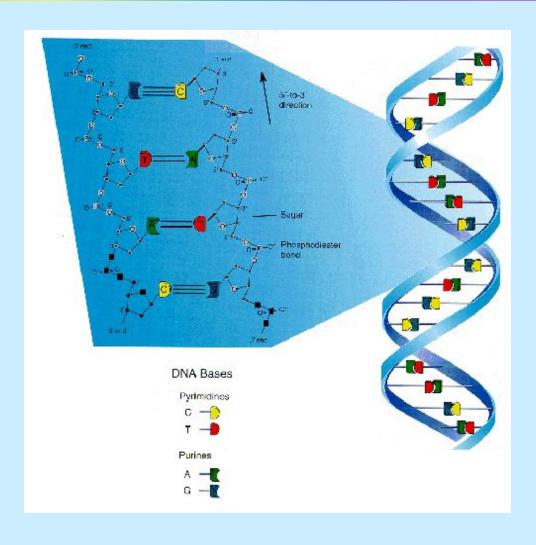
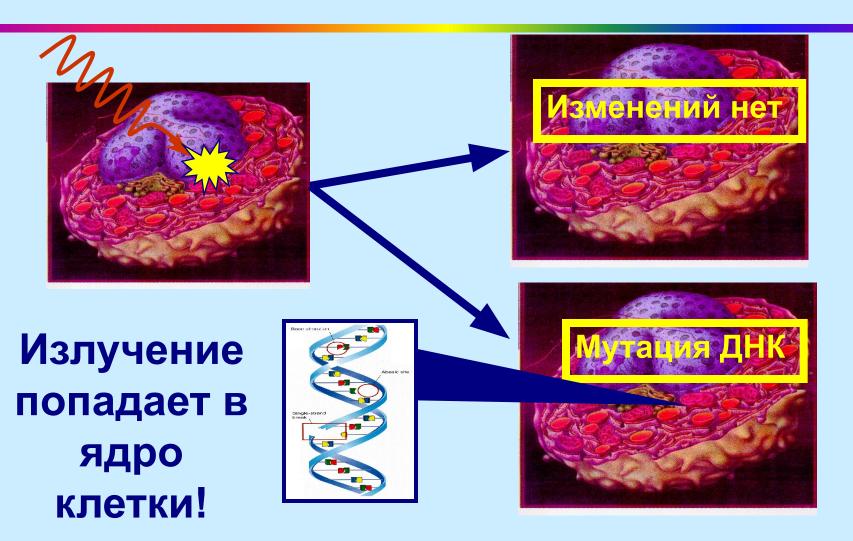
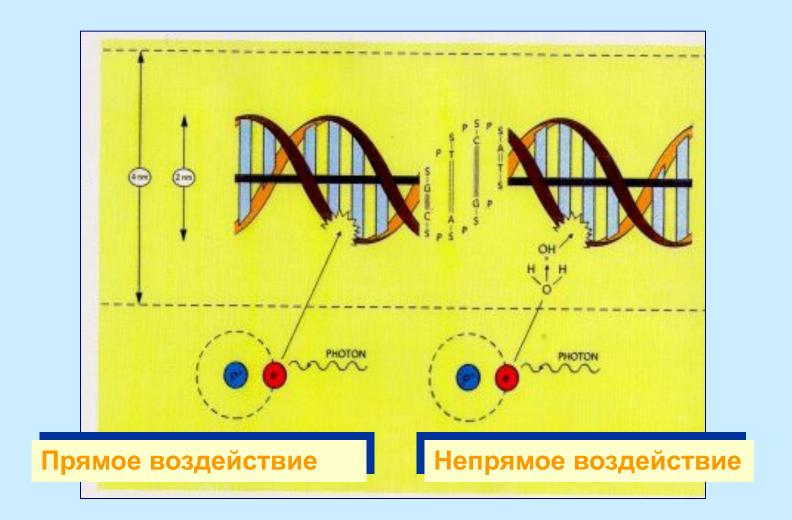
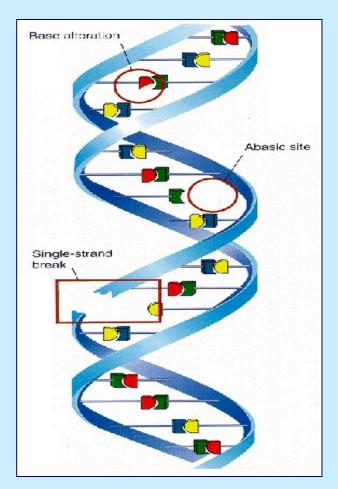




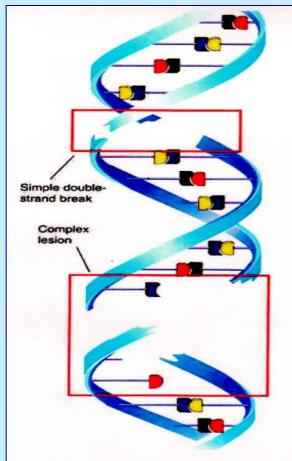
Схема строения хромосомы в поздней профазе — метафазе митоза. 1—хроматида; 2—центромера; 3—короткое плечо; 4—длинное плечо.

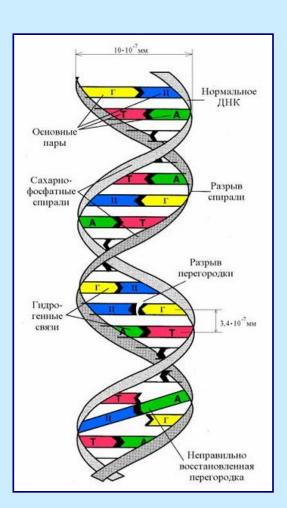

Строение хромосомы



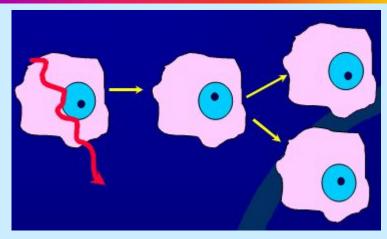
Облучение клеток

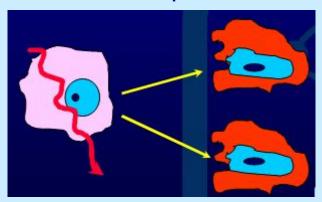


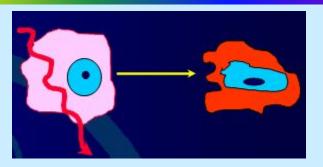

Взаимодействие ионизирующего излучения с ДНК

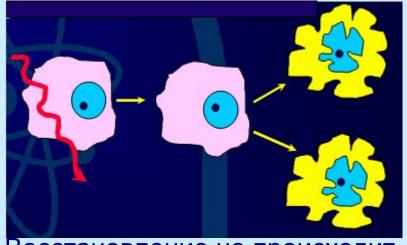


Опасность для ДНК






Клеточные эффекты излучения


Нормальное восстановление после повреждения

Смерть дочерних клеток

Смерть клетки в результате повреждения

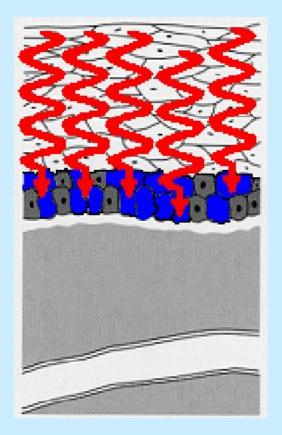
Восстановление не происходит или происходит неидентичное восстановление перед делением

Восстановление

Тело человека содержит около 10^{14} клеток. Поглощенная доза в 1 мГр в год (от естественных источников) произведет около 10^{16} актов ионизации, что означает 100 на одну клетку человека. Если допустить, что масса ДНК составляет 1% от массы клетки, то в результате получается ионизация одной молекулы ДНК в каждой клетке человека ежегодно.

Эффекты излучения у человека

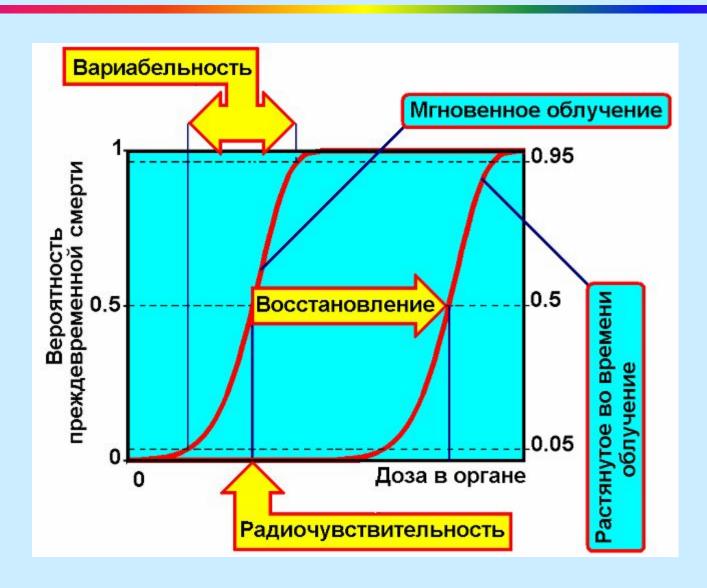
VECTIVA NAMEDICA	Эффекты излучения	
Клетки-мишени	Детерминированные	Стохастические
Соматические клетки человека	Лучевые поражения органов и тканей	Раки
Половые клетки человека		Наследуемые заболевания у потомков
Соматические клетки эмбриона и плода	Врожденные уродства и аномалии	Раки



Эффекты, влияющие на здоровье

Детерминистические, детерминированные -

ранние эффекты


Степень воздействия эффекта пропорциональна полученной дозе. Эффект гарантированно происходит выше порогового уровня дозы.

Массовая гибель клеток

Закономерности развития детерминированных эффектов

Детерминистические эффекты

Радиационный эффект, для которого обычно существует пороговый уровень дозы, выше которого тяжесть проявления этого эффекта возрастает с увеличением дозы.

например, Изменения в крови Радиационные ожоги

Дозы и эффекты

Все тело

Определенные хромосомные

изменения 0,1 Зв

Изменения в крови 1 Зв

Лучевая болезнь 1 Зв

Летальный исход 10 Зв

Локальные дозы на кожу

Покраснение 5 Зв

Потеря волос 7 Зв

Тяжелые повреждения ткани 20 Зв

Падение числа красных кровяных телец

Эритема & Депиляция

Эритема на руке (ожог от рентгеновского облучения)

Образование волдырей/повреждение тканей

Локализованный ожог

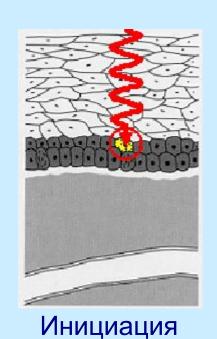
Повреждение тканей на пальцах

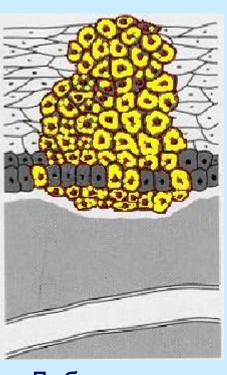
Последует хирургическое вмешательство

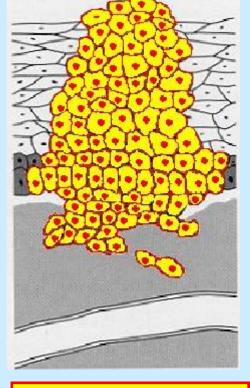
Сильные ожоги

Локализованные ожоги

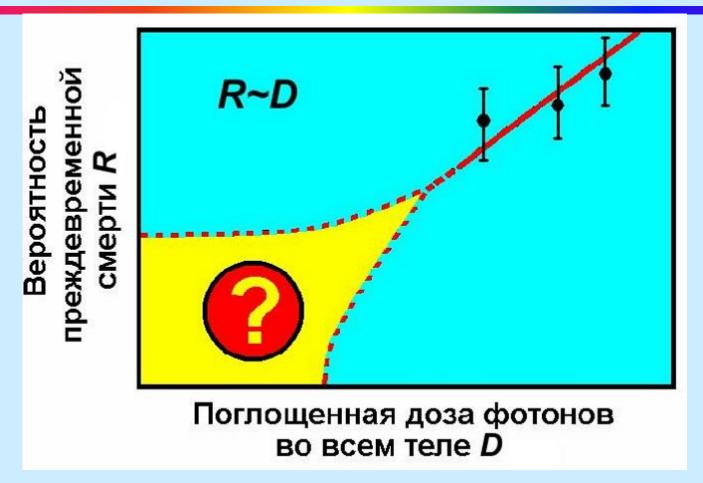
Радиационные ожоги


Стохастические эффекты


Радиационные эффекты, как правило, не имеющие порогового уровня дозы, вероятность возникновения которых пропорциональна дозе, а тяжесть проявления – не зависит от дозы.

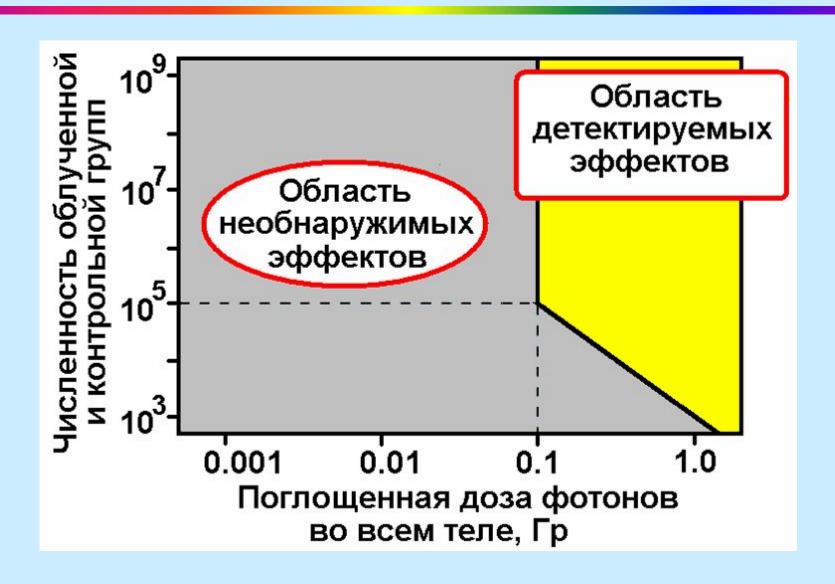

например, облучение вызывает раковые заболевания

Стохастические эффекты


Нарушение в ткани

Доброкачественная опухоль

Злокачественная опухоль


Стохастические эффекты

Можно предсказать ожидаемое количество дополнительных раков (опухолей или лейкозов) в такой группе, но указать, у кого конкретно возникнет рак, вызванный ионизирующим излучением, НЕЛЬЗЯ.

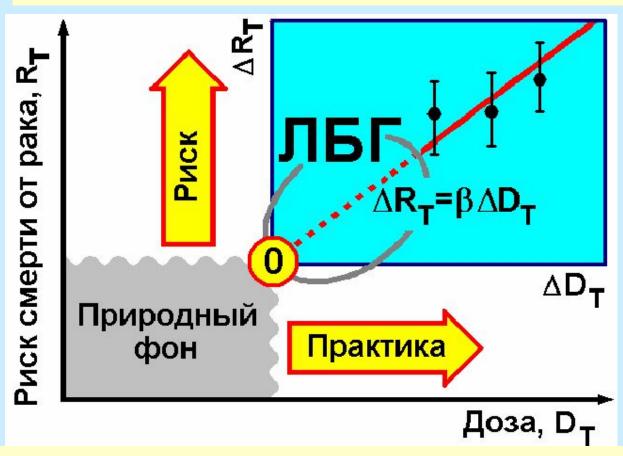
Обнаружимость стохастических эффектов

Факторы риска от радиации

Риски работников в зависимости от радиации:

рак с фатальным исходом 4.0 % на 3в рак без фатального исхода 0.8 % на 3в тяжелые наследственные эффекты 0.1 % на 3в

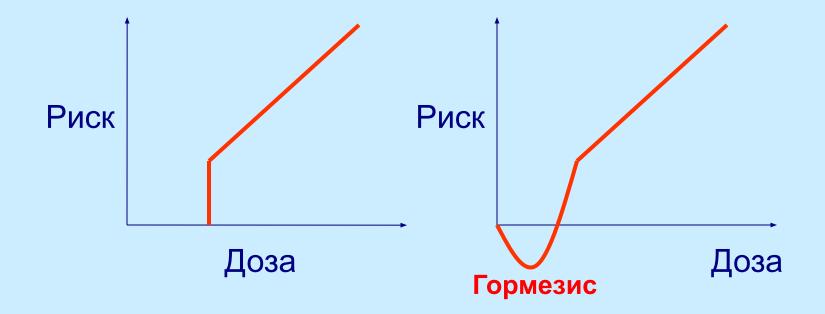
В общем


4.9 % на Зв

Фактор риска от радиации = 4.9% на Зв

Доза – риск стохастических эффектов

Линейная беспороговая гипотеза (ЛБГ)



Доказательства возникновения рака под действием малых доз излучения пока НЕ НАЙДЕНЫ.

Альтернативные теории риска

- □ Альтернативные теории
 - **✓** Порог
 - ✓ Гормезис

Радиационный гормезис

Объект исследования	Критерий действия радиации	Результат действия радиации в дозах	
		больших	малых, вызывающих гормезис
парамеции, фито-	скорости деления	понижение, вплоть	возрастание
и зоопланктон,	клеток, роста	до полного	
дрожжи, клетки в	популяции, синтеза	прекращения	
культуре	ДНК	процесса	
семена, растения	всхожесть семян,	задержка,	стимуляция
	рост, развитие	прекращение	
	растений		
эмбрионы	рост и развитие	задержка,	стимуляция
насекомых и птиц		прекращение	
насекомые, птицы,	плодовитость	падение	возрастание
рыбы,			
млекопитающие			
животные,	иммунитет	угнетение	активация
человек			

Риски

Ожидаемые сокращения жизни

Неженатые мужчины 3500 дней

Курящие мужчины 2250 дней

Незамужние женщины 1600 дней

30% превышения веса 1300 дней

Рак 980 дней

Строительные работы 300 дней

Автомобильные аварии 207 дней

Бытовые инциденты 95 дней

Административная работа 30 дней

Радиологическая проверка 6 дней

Риски

Следующие виды жизнедеятельности связаны с риском смерти (1/1000000)

- •10 дней работы в отделении ядерной медицины
- курение 1,4 сигареты
- проживание 2 дня в загрязненном городе
- 6 минут путешествия на каноэ
- 1,5 мин альпинизма
- 480 км езды на машине
- 1600 км полета на самолете
- проживание 2 месяца вместе с курящим
- выпивание 30 банок диетической соды

Генетические риски

□ Ионизирующее излучение, как известно, вызывает наследственные мутации во многих растениях и животных

HO

□ Тщательные изучения 70,000 потомков выживших после взрыва атомной бомбы не смогли выявить наследственных аномалий, раковых заболеваний, хромосомных аберраций в циркулирующей лимфе или мутационных изменений в белках крови.

Neel et al. Am. J. Hum. Genet. 1990, 46:1053-1072