БЛИЖНЕПОЛЬНАЯ ОПТИЧЕСКАЯ СПЕКТРОСКОПИЯ

ДИФРАКЦИОННЫЙ ПРЕДЕЛ

Оптический микроскоп не способен различать объекты, размер которых меньше значения:

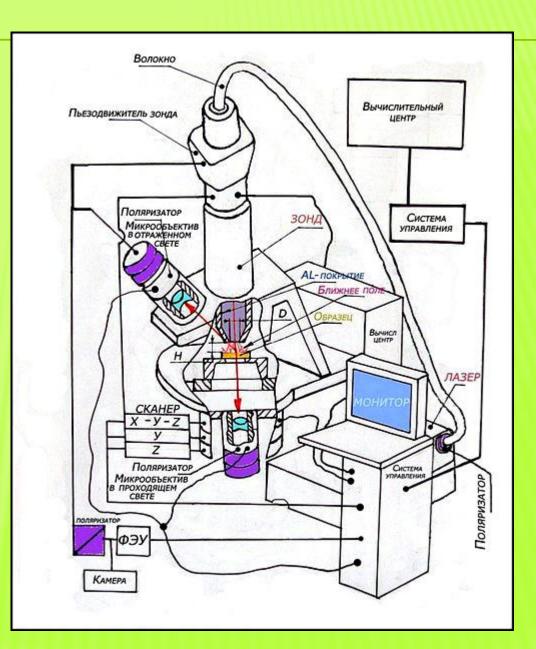
$$\mathbf{R} = \frac{\lambda}{(2 \cdot n \cdot \sin \theta)}$$

λ - длина электромагнитной волны в вакууме

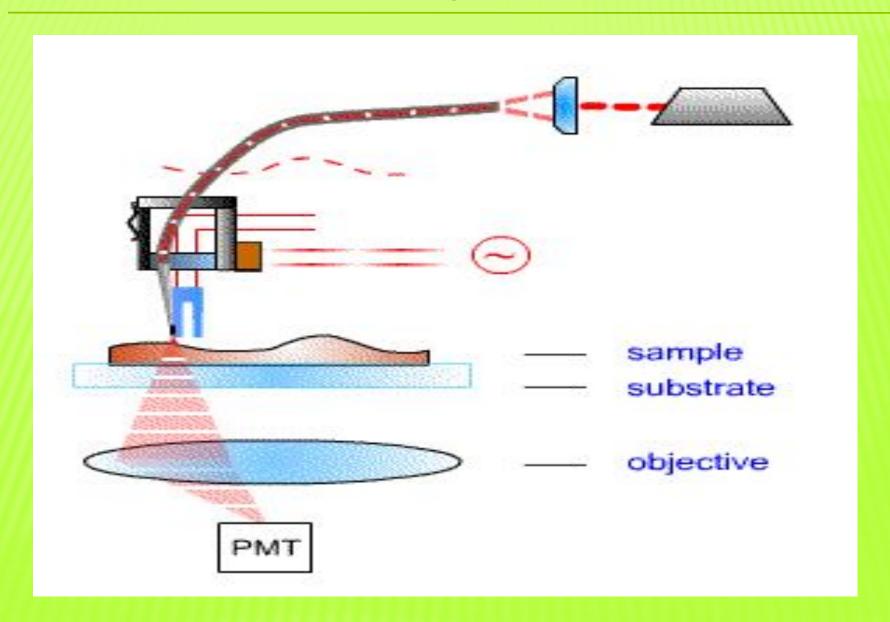
n - показатель преломления среды

 θ – апертурный угол

У хороших микроскопов θ близок к 90°, и следовательно, предельное разрешение близко к дифракционному пределу $R=\lambda/2n$.


Меньший размер пятна не позволяет получить явление дифракции электромагнитных волн.

ИСТОРИЯ РАЗВИТИЯ ТЕОРИИ БОМ

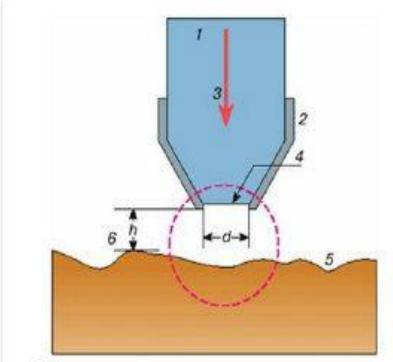

- 1928 Сингом (E.H. Synge) была предложена теория БОМ.
- 1972 Эшем (E.A. Ash) в опытах с микроволнами было получено её первое подтверждение.
- 1982 Дитером Полем (лаборатория фирмы IBM, г. Цюрих, Швейцария) был изобретен ближнепольный оптический микроскоп (БОМ) (сразу вслед за изобретением туннельного микроскопа).

ОСНОВНЫЕ УЗЛЫ БОМ

- Микрообъектив,
 работающий в отраженном свете;
- Микрообъектив,
 работающий в проходящем свете;
- Пьезодвижитель для перемещения зонда с аппертурой $D < \lambda$ и <250нм;
- Зонд;
- Лазер;
- Сканер с возможностью перемещения стола в системах координат:

ТЕОРИЯ И ПРИНЦИП РАБОТЫ БОМ

СХЕМА И ОПИСАНИЕ ЗОНДА


Предел разрешения

• Апертурный микроскоп:

R = 10 ÷13нм

• Безапертурный микроскоп:

R=1 HM

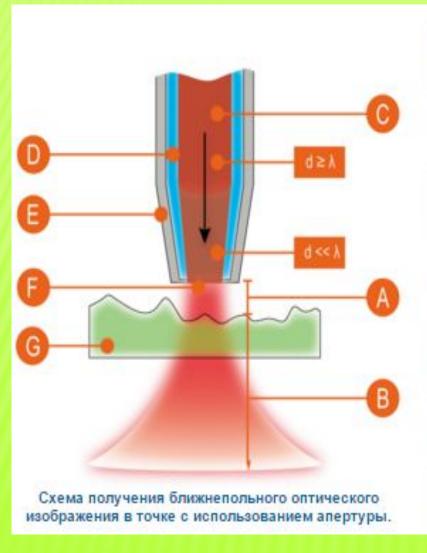


Схема и описание зонда:

1 – заостренное оптическое волокно; 2 – металлическое покрытие; 3 – проходящее через зонд излучение; 4 – выходная апертура зонда, d ≪ λ; 5 – поверхность исследуемого образца; 6 – расстояние между исследуемой поверхностью и апертурой зонда, h ≪ λ. Штрихами очерчена область ближнепольного контакта Существует два способа локализации электромагнитного поля: апертурный и безапертурный.

- 1) Для освещения объекта и/или детектирования сигнала используется апертура, размер которой может быть существенно меньше длины волны ($d << \lambda$). Как правило, для этой цели используются зонды на основе оптического волокна покрытого металлом и апертурой на конце зонда. При этом апертура должна располагаться на расстоянии от поверхности меньшем, чем длина волны ($h << \lambda$).
- 2) Для локализации излучения используется иголка зонда, поднесенная к освещенной поверхности на расстояние меньше длины волны. В таком режиме острие рассеивает (превращает в дальнее) ближнее поле, локализованное у поверхности образца.

МИКРОСКОПИЯ БЛИЖНЕГО ПОЛЯ С ИСПОЛЬЗОВАНИЕМ АПЕРТУРЫ

А - область ближнего поля (h << λ)</p>

B - область дальнего поля (h ≥ λ)

С - лазерное излучение

D - оптическое волокно

Е - металлическое покрытие оптического волокна

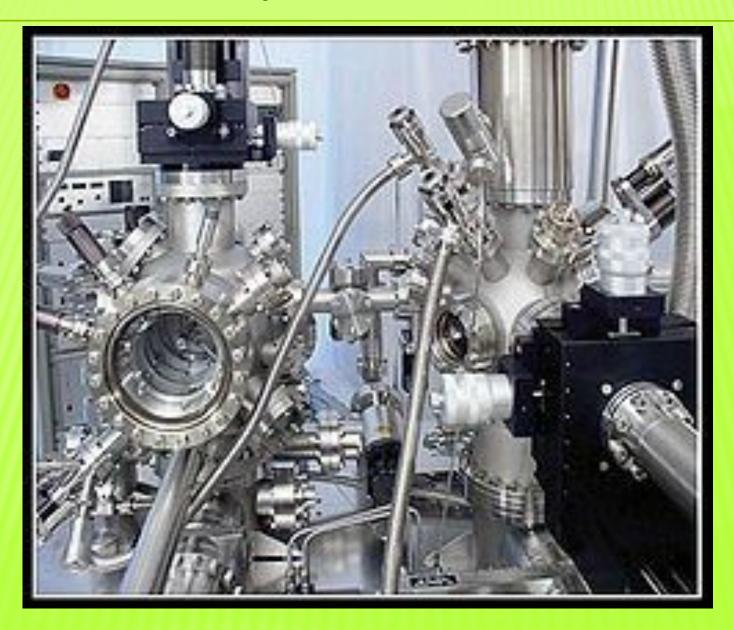
F - апертура (d << \lambda)

G - образец

На данном этапе развития техники БОМ конкурируют с электронными микроскопами и имеют свои преимущества и недостатки.

Сравнение БОМ и ЭМ

	Трансмиссионный электронный микроскоп	Световой
Источник излучения	электроны	свет
Длина волны	например, 0,005 нм при 50 кВ	400 - 700 нм
Максимальное полезное увеличение	х2500 (на экране)	x1500
Максимальное разрешение		
на практике	0,5 нм	200 - 500 нм
в теории	0,2 нм	200 нм
Линзы	электромагниты	стеклянные
Объект	не живой, обезвоженный, относительно маленький или тонкий	живой или неживой
Распространённые красители	содержат цветные металлы, которые отражают электроны	цветные красители
Изображение	чёрно-белое	цветное


Преимущества БОМ:

- 1.Световой работает как в воздухе, так и в жидкости и в вакууме, в отличие от ЭМ, работающего только в вакууме.
- 2. Субстрат может быть живой (клетки) или не живой, в отличие от ЭМ, в котором используется только не живой, так как процесс проводится в вакууме.
- 3.Изображение цветное
- 4.БОМ значительно меньше по размерам, проще и дешевле

Недостатки БОМ:

- 1.Так как размер электрона намного меньше длины волны света, то разрешающая способность электронного микроскопа на несколько порядков больше чем у светового. Разрешающая способность светового микроскопа ограничена длиной световых волн.
- 2. Увеличение ЭМ больше, чем у БОМ.

ОБЩИЙ ВИД БОМ

ПРИБОРЫ

ИНТЕГРА Соларис.

Особенности:

- Изучение оптических свойств с разрешением до 30 нм
- Возможность собирать одновременно отраженные и проходящие фотоны
- Беспрецедентно высокое разрешение при работе с флуоресцентно- окрашенными объектами

• OTKOLITI IĞ BIAGOĞU

Применение

- Исследования биологических объектов
- Контроль качества поверхностей оптических деталей
- Излучающих полупроводниковых структур
- Исследование характеристик нанооптических и интегрально-оптических элементов
- Исследование характеристик наноэлектронных элементов, в частности, спектров квантовых точек

Дополнительные возможности

- Возможность проводить измерения в жидкости
- Лазерный конфокальный сканирующий микроскоп/спектроскоп

#