
Кубанский государственный аграрный университет

Кафедра неорганической и аналитической химии

Бор

Костенко Е.С., Пестунова С.А., Кайгородова Е.А.

В	5
БОР	
10,81	
2s ² 2p ¹	3 2

Бор (лат. Borum) – химический элемент III группы периодической системы Менделеева. Неметалл.

Символ В	Валентный уровень	2s ² 2p ¹
----------	-------------------	---------------------------------

Атомная номер 5 Радиус атома 98 пм

Атомная масса 10,811 а.е.м. Электроотрицательность 2,01

Изотопы

Природный бор состоит из двух стабильных изотопов: ¹⁰B (19%) и ¹¹B (81%)

Физические свойства

Внешний вид простого вещества – кристаллы серовато-черного цвета (очень чистый бор бесцветен).

$$T_{\Pi\Pi} = 2075 \, {}^{\circ}\text{C}$$
 $T_{KM\Pi} = 3700 \, {}^{\circ}\text{C}$

Основные модификации

 α - ромбоэдрическая $\rho = 2,46 \text{ г/см}^3$

тетрагональная $\rho = 2,37 \text{ г/см}^3$

 β -ромбоэдрическая $\rho = 2,35 \text{ г/см}^3$

Распространенность

Бор сравнительно мало распространен в природе — общее содержание в земной коре около 10^{-3} % (масс.). Элементарный бор в природе не встречается. Он входит во многие соединения и широко распространён, особенно в небольших концентрациях; в виде боросиликатов и боратов, а также в виде изоморфной примеси в минералах входит в состав многих изверженных и осадочных пород. Бор известен в нефтяных и морских водах (в морской воде - 4,6 мг/л), в водах соляных озёр, горячих источников и грязевых вулканов.

Важнейшие минералы

Датолит	CaBSiO ₄ (OH)	Кернит	$Na_2B_4O_7 \cdot 4H_2O$
Сассолин	H ₂ BO ₂	Колемапит	Ca ₂ B ₆ O ₁₁ · 3H ₂ O
Бура	$Na_2B_4O_7 \cdot 10H_2O$	Гидроборацит	MgCaB,O ₁₁ · 6H ₂ O
Аппарит	MgHBO ₃	Улексит	NaCaB _z O ₀ 8H ₂ O

Получение

Луи Жак Тенар

Свободный бор впервые получили в 1808 г. французские химики Ж. Гей-Люссак и Л. Тенар нагреванием борного ангидрида B_2O_3 с металлическим калием

Жозеф Луи Гей-Люссак

- 1. Наиболее чистый бор получают пиролизом бороводородов. Такой бор используется для производства полупроводниковых материалов и тонких химических синтезов.
- 2. Метод металлотермии (чаще восстановление магнием или натрием):

$$B_2O_3 + 3 Mg = 3 MgO + 2 B$$

 $KBF_4 + 3 Na = 3 NaF + KF + B$

3. Термическое разложение паров бромида бора на раскаленной вольфрамовой проволоке в присутствии водорода (метод Ван-Аркеля): 2 BBr₃ + 3 H₂ = 2 B + 6 HBr (1000—1200 °C)

Химические свойства

Бор – химически пассивен: не реагирует с водородом, водой, разбавленными кислотами, щелочами в разбавленном растворе.

Бор реагирует в жестких условиях с:

- 1. Водяным паром (700-800 °C) **2 В + 3 H_2O_{(nap)} = B_2O_3 + 3 H_2**
- 2. Концентрированной HNO_3 B + 3 $HNO_{3 \text{ (конц, гор)}} = B(OH)_3 \downarrow + 3 NO_2 \uparrow$
- 3. Щелочами 2 В $_{(аморфн)}$ + 2 NaOH $_{(конц)}$ + 6 H $_2$ O= 2 Na[B(OH) $_4$]+ 3 H $_2$ ↑
- 4. Галогенами (Hal=F, 30 °C; Hal=Cl, Br, I 400 °C) 2 B + 3 Hal₂ = 2 BHal₃
- 5. Азотом (900-1000 °C) **2 В + N**₂ = **2 ВN**
- 6. Галогеноводородами (400-500 °C) **2 В + 6 HHal = 2 BHal**₃ **+ 3 H**₂
- 7. Сероводородом (800-900 °C) **2 B + 3 H₂S = B₂S₃ + 3 H₂**
- 8. Аммиаком (1000-1200 °C) **2 B + 3 NH**₃ = **2BN + 3 H**₂

Оксид бора B_2O_3

В₂О₃ – белый, аморфный или кристаллический, очень твердый, гигроскопичный, низкоплавкий (Т_{пл} = 480 °C), термически устойчивый.

Кристаллический В₂О₃ – химически пассивен.

Аморфный оксид бора реагирует с:

- 1. Водой $B_2O_{3 \text{ (аморфн)}} + 3 H_2O = 2 B(OH)_3 \downarrow$
- 2. Концентрированной **HF** $B_2O_{3 \text{ (аморфн)}} + 8 \text{ HF}_{\text{(конц)}} = 2H[BF_4]$
- 3. Щелочами $B_2O_{3 \text{ (аморфн)}} + 2 \text{ NaOH}_{\text{(конц)}} + 3 H_2O = 2 \text{ Na[B(OH)}_4]$ $B_2O_{3 \text{ (аморфн)}} + 2 \text{ NaOH}_{\text{(разб)}} = \text{Na}_2B_4O_7 + H_2O$
- 4. Аммиаком (2000 °C; кат. C, Mg) $B_2O_{3 \text{ (аморфн)}} + 3 \text{ NH}_3 = 2 \text{ BN} + 3H_2O$
- 5. Металлами (800-900 °C) $B_2O_{3 \text{ (аморфн)}} + 2 \text{ Al } = \text{Al}_2O_3 + 2 \text{ B}$
- 6. Углеродом (1000 °C) B_2O_3 (аморфн) + 3 C + 3 CI_2 = 2 BCI_3 + 3 CO

Гидроксид бора $B(OH)_3 \leftrightarrow H_3BO_3$

 $\mathbf{B}(\mathsf{OH})_3$ — белый, разлагается при нагревании, перегоняется с водяным паром. Растворяется в воде, метаноле, ацетоне, глицерине, жидком аммиаке. Соединение $\mathsf{B}(\mathsf{OH})_3$ имеет внутри молекулы наиболее "ковалентную" связь бора с кислородом, поскольку бор ближе по электроотрицательности к кислороду, чем Al и Ca. Из-за высокой электро-отрицательности бору энергетически выгоднее входить в состав отрицательно заряженной частицы — кислотного остатка. Поэтому формулу $\mathsf{B}(\mathsf{OH})_3$ чаще записывают как $\mathsf{H}_3\mathsf{BO}_3$: $\mathsf{H}_3\mathsf{BO}_3=3\mathsf{H}^++\mathsf{BO}_3^{3-}$ (в растворе)

 $B(OH)_3$ pearupyet c:

- 1. Щелочами $4 B(OH)_3 + 2 NaOH_{(разб)} = Na_2B_4O_7 + 7 H_2O_3$ $B(OH)_3 + NaOH_{(насыщ)} = Na[B(OH)_4]$
- 2. Концентрированной **HF** $B(OH)_3 + 4 HF_{(конц)} = H[BF_4] + 3 H_2O$
- 3. Солями образует комплексы $2 B(OH)_3 + M_2SO_4 + 3 H_2SO_{4(безводн)} = 2 M[B(SO_4)_2] + 6 H_2O$ $M = K^+, NH_4^-, \frac{1}{2} Sr^{2+}$

Применение

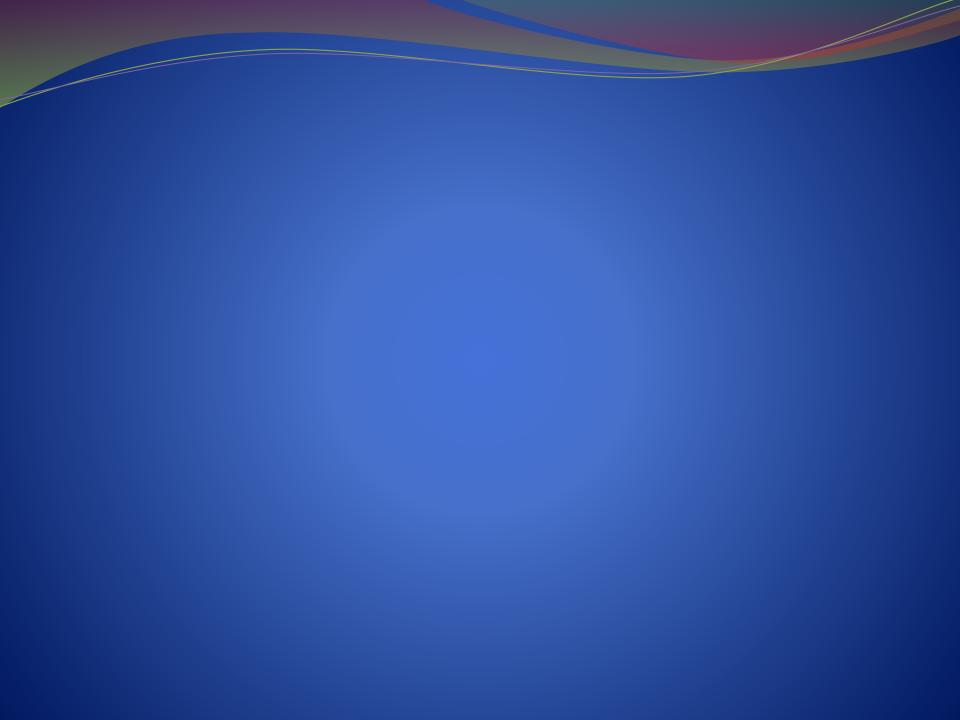
Элементарный бор

- упрочняющее вещество композиционных материалов
- в электронике бор используется для изменения типа проводимости кремния
- в металлургии в качестве микролегирующего элемента сталей
- -в медицине бор используют для лечения злокачественных опухолей

Соединения бора

- пербораты используют в качестве отбеливающих средств
- нитрид бора применяется в качестве абразивного материала
- борная кислота применяется в атомной энергетике в качестве поглотителя нейтронов
- бороводороды чрезвычайно эффективными ракетными топливами
- полимерные соединения бора с водородом и углеродом являются чрезвычайно стойкими к химическим воздействиям и высоким температурам

Биологическая роль


В мышечной ткани человека содержится $(0,33-1)\cdot 10^{-4}$ % бора, в костной ткани $(1,1-3,3)\cdot 10^{-4}$ %, в крови -0,13 мг/л. Ежедневно с пищей человек получает 1-3 мг бора. Токсичная доза -4 г.

Бор нормализует работу эндокринных желез, он способствует улучшению обмена магния, фтора и кальция — элементов, являющихся основным материалом для «строительства» костей, и тем самым укрепляет и улучшает структуру скелета

Соединения бора могут оказывать противовоспалительное, противоопухолевое и гиполипидемическое (нормализующее жировой обмен) действие. При остеопорозе, костном флюорозе, артритах и в начальных стадиях эпилепсии медики назначают препараты бора

Источниками бора для человека являются, в основном, продукты растительного происхождения. Это орехи, бобовые, чернослив, груши, помидоры, яблоки, виноград, финики, корнеплоды, соя, изюм, мёд, морепродукты, пиво и красное вино

Бор необходим для роста растений. При недостатке бора растения плохо развиваются, замедляется их рост, появляются разные заболевания.

