Operating Systems:
Internals and Design Principles, 6/E
William Stallings

Chapter 1
Computer System Overview

Q\
% Roadmap

- Basic Elements
— Processor Registers
— Instruction Execution
— Interrupts
— The Memory Hierarchy
— Cache Memory
— [/O Communication Techniques

=y

,Q\
@Eﬁ) Operating System

* Exploits the hardware resources of one or
more processors

* Provides a set of services to system users

 Manages secondary memory and /O
devices

=y

%’\ A Computer’s
@ Basic Elements

 Processor
* Main Memory

* /O Modules
» System Bus

=y

\
% Processor

» Controls operation, performs data
processing

* Two internal registers
— Memory address resister (MAR)
— Memory buffer register (MBR)

* |/O address register
* 1/O buffer register

=y

,rg\
@Eﬁ) Main Memory

 Volatile
— Data is typically lost when power is removed

» Referred to as real memory or primary
memory

» Consists of a set of locations defined by
sequentially numbers addresses

— Containing either data or instructions

=y

% /O Modules

* Moves data between the computer and the
external environment such as:

— Storage (e.g. hard drive)
— Communications equipment
— Terminals
» Specified by an I/O Address Register
— (I/OAR)

=y

Q\
%Eﬁ System Bus

« Communication among processors, main
memory, and I/O modules

3
\iﬁ \ Top-Level View

CPU
PC MAR
IR MBR
I/0 AR
I/0 Module
Buffers

System
Bus

PC

IR
MAR
MBR
I/O AR
I/OBR =

Figure 1.1 Computer Components:

Main Memory

Instruction

o 0 0 12 =D

Instruction

Instruction

Data
Data
Data
Data

-~ o~
= =

Program counter

Instruction register

Memory address register
Memory buffer register
Input/output address register
Input/output buffer register

Top-Level View

[
L &]

Q\
% Roadmap

— Basic Elements

-Processor Registers
— Instruction Execution
— Interrupts
— The Memory Hierarchy
— Cache Memory
— |/O Communication Techniques

=y

2
\
%A Processor Registers

®

* Faster and smaller than main memory

» User-visible reqisters
— Enable programmer to minimize main memory
references by optimizing register use
 Control and status registers

— Used by processor to control operating of the
processor

— Used by privileged OS routines to control the
execution of programs

R
\ "] "
@Eﬁ) User-Visible Registers
* May be referenced by machine language

— Avalilable to all programs — application
programs and system programs

» Types of registers typically available are:
— data,
— address,
— condition code registers.

=y

Eﬁ \ Data and
® Address Registers

 Data

— Often general purpose
— But some restrictions may apply

 Address

— Index Register
— Segment pointer
— Stack pointer

=y

A Control and
0

Status Registers

* Program counter (PC)

— Contains the address of an instruction to be
fetched

* Instruction register (IR)
— Contains the instruction most recently fetched

* Program status word (PSW)
— Contains status information

=y

Lo}
[

Q\
% Roadmap

— Basic Elements
— Processor Registers

= Instruction Execution

— Interrupts

— The Memory Hierarchy

— Cache Memory

— |/O Communication Techniques

=y

|
\
% Instruction Execution

®

* A program consists of a set of instructions
stored in memory

* Two steps

— Processor reads (fetches) instructions from
memory

— Processor executes each instruction

=y

Basic Instruction Cycle

Fetch Stage Execute Stage

Figure 1.2 Basic Instruction Cycle

%Q\ Instruction Fetch
¥

and Execute

* The processor fetches the instruction from
memory

* Program counter (PC) holds address of
the instruction to be fetched next

— PC is incremented after each fetch

=y

2
&Eﬁ) " Instruction Register

* Fetched instruction loaded into instruction
register
» Categories
— Processor-memory,
— processor-1/0,
— Data processing,
— Control

=y

~ ® Characteristics of a

@ = Hypothetical Machine

3 4 15
Opcode Address

(a) Instruction format

S Magnitude

(b) Integer format

Program counter (PC) = Address of instruction
Instruction register (IR) = Instruction being executed
Accumulator (AC) = Temporary storage

(c) Internal CPU registers
0001 = Load AC from memory
0010 = Store AC to memory
0101 = Add to AC from memory

(d) Partial list of opcodes

Figure 1.3 Characteristics of a Hypothetical Machine

R Example of
¥ Program Execution

Fetch Stage Execute Stage
Memory CPU Registers Memory CPU Registers
300{1 9 40 3 0 0|PC 30011 9 40 3 0 1|PC
30159411> AC| 3015 9 4 1 000 3|AC
302294 1 19 4 0|IR|302(2 9 41 19 4 0|IR
940[0 0 0 3 940[0 0.0 3
941{0 0 0 2 94110 0 0 2
Step 1 Step 2
Memory CPU Registers Memory CPU Registers
300{1 9 40 301|PC 30011 9 4 0 302|PC
301{5 9 4 1 000 3]AC|] 3015 9 4 1 0 00 5[AC
30229411594111’\ 3022941(5941
940[0 0 0 3 94000 03] ™*3+2=5
941[0 0 0 2 941[0 0 0 2}——"
Step 3 Step 4
Memory CPU Registers Memory CPU Registers
300{1 9 40 3 0 2|PC 300{1 9 40 3 0 3|PC
301{5 9 41 000 5|AC| 30159 41 000 5[AC
3022 941 »2 9 4 1|[IR|302]2 9 4 1 29 41|IR
940[0 0.0 3 940[0 0.0 3
941{0 0 0 2 94110 0 0 5
Step 5 Step 6

Figure 1.4 Example of Program Execution
(contents of memory and registers in hexadecimal)

Q\
% Roadmap

— Basic Elements
— Processor Registers
— Instruction Execution

= Interrupts
— The Memory Hierarchy

— Cache Memory
— |/O Communication Techniques

=y

A
@)@ Interrupts
* Interrupt the normal sequencing of the
processor

* Provided to improve processor utilization

— Most I/O devices are slower than the
processor

— Processor must pause to wait for device

=y

Common Classes
of Interrupts

Table 1.1 Classes of Interrupts

Program

Timer

o

Hardware failure

Generated by some condition that occurs as a result of an instruction
execution, such as arithmetic overflow, division by zero, attempt to execute
an illegal machine instruction, and reference outside a user's allowed
memory space.

Generated by a timer within the processor. This allows the operating system
to perform certain functions on a regular basis.

Generated by an [/O controller, to signal normal completion of an operation
orto signal a variety of error conditions.

Generated by a failure, such as power failure or memory parity error.

§§Q\ Flow of Control
& without Interrupts

User 'O
REOpGRELS § e

$

.
A
. $2,2° 3
.] +
. .‘ . .
. st b4
. s (| .
. - 1 .

@ |

.
. - [N] .
: .'. s b4 :
. .
. - » . . I/
. Lr . . M
L . . . C
» . .
W £
i - b4 .
. . M .
s » . .

@

WRITE

1w

(a) No interrupts

Eé”\ Interrupts and the
& Instruction Cycle

s

0.

rog o
© A0 |®
L s o
WRITE “oeer? ¢~ Command

(b) Interrupts; short I'O wait

‘ié@\ Transfer of Control
& via Interrupts

User Program Interrupt Handler

v

M . \%

Figure 1.6 Transfer of Control via Interrupts

N * Instruction Cycle
¥ with Interrupts

Fetch Stage Execute Stage Interrupt Stage

Interrupts
Disabled

Enabled

HALT

Figure 1.7 Instruction Cycle with Interrupts E

=y

I/O
ot T T @ ol
1 |@ @ @
f it TO &
3 ?' 3 Co]nlrnand p[ﬁ:o : Iopelzgion Iope]igion
®
g'.‘. ::“."o o
@ E .':?._ 0.'-.. Iﬁter:ﬁlpt @ @ Ioperation
. ',':' 'u..‘ " andler - _
ot |L E.':.'. .'-- .". .E I Prﬁtsor Iopeligion @
g Wi i —
wrRiE ¢ S h 1 |@® ®)
@ : ,-" i * EN @ (b) With interrupts
: & ..' ircled be: fi
e to(lf;;cntfer: ?Figrlfr;elgb)
£ P
X 7
. (a) Without interrupts
E (circled numbers refer
E to numbers in Figure 1.5a)
.
WRITE Figure 1.8 Program Timing: Short I/O Wait

Z (b) Interrupts; short IO wait

% _
: Long |/O wait

User 1/O 4
Program , Program e . —
— » o —_—
4 ® ©
$ Fe”
@ i SO
s ® ®
. aAv- iy .
AL g e o TR
e i T
‘VRITE . an” '?'." Command Processor I/O @
e’ R wait operation 10
MG i
: A operation
L - Wi
T Processr
. A wait
E [- . ER
® i i
0 @ e
. 2. R A —
8 Interrupt @
0 Handler g g
L) . - - ——
:.. : .‘...k.-c' *: F 3
I e s
e 1 |® = ®
TE “fe... i1 & 10
—_— . e : i
: .' "‘:b._.' R Processor I’'o —_— operation
E ..‘. s ** END wait operation Processor
. s 2 S
E :o :‘ wait
. .
s .., ...- @ 4
$ 55 @ (b) With interrupts
b4 £ (circled numbers refer
o 1 to numbers in Figure 1.5¢)
WRITE » (a) Without interrupts
(circled numbers refer

Simple

Hardware

—~—A——

Device controller or
other system hardware
issues an interrupt

Processor finishes
execution of current
instruction

Processor signals
acknowledgment
of interrupt

Processor pushes PSW
and PC onto control
stack

Processor loads new
PC value based on
interrupt

Interrupt Processing

Software

f—\A—/\

v
Save remainder of
process state

information

Process interrupt

Restore process state
information

Restore old PSW
and PC

Figure 1.10 Simple Interrupt Processing

\§§‘Changes in Memory and
" Registers for an Interrupt

T-M
N+1
T-M Control I
Control B Y Stack -
Stack — | T
T »rer+1]
N+1 Program
Program Counter
Counter j
: =
Yy [Start l Interrupt . ral
Interrupt General Service Registers
Service Registers ¥+ L [emm| Routine
Y + L [Remm| Routine
Stack
Pointer
Processor
Processor
T
T-M ¥
38 User's
N . N+1
N+l User's Program
Program
: Main
Mia Memory
Memory —
(a) Interrupt occurs after instruction (b) Return from interrupt

at location N

2
@Eﬁ\ Multiple Interrupts

* Suppose an interrupt occurs while another
Interrupt is being processed.

— E.g. printing data being received via
communications line.

* Two approaches:
— Disable interrupts during interrupt processing
— Use a priority scheme.

=y

o
[
peat

3 .
A Sequential
* Interrupt Processing

X

Interrupt
Handler Y

|

‘/@f (a) Sequential interrupt processing \E

N " Nested
* Interrupt Processing

Interrupt
User Program Handler X

/

\

(T

Interrupt
andler Y

e

ﬁ— (b) Nested interrupt processing

Example of
Nested Interrupts

Printer Communication
interrupt service routine interrupt service routine

User program

|
e

I

(=

»

N

|

Disk
e interrupt service routine

\40 \25

N
IIIIIII/%QIIIIIII

/

f

{

Figure 1.13 Example Time Sequence of Multiple Interrupts

,r@\
@Eﬁx Multiprogramming

* Processor has more than one program to
execute

* The sequence the programs are executed
depend on their relative priority and
whether they are waiting for 1/O

» After an interrupt handler completes,
control may not return to the program that
was executing at the time of the interrupt

Q\
‘iﬁ Roadmap

— Basic Elements

— Processor Registers
— Instruction Execution
— Interrupts

= 1 he Memory Hierarchy

— Cache Memory
— |/O Communication Techniques

=y

,rg\
@Eﬁ) Memory Hierarchy

* Major constraints in memory

— Amount

— Speed

— Expense
» Faster access time, greater cost per bit
» Greater capacity, smaller cost per bit

» Greater capacity, slower access speed

=y

o
[
peat

@E\%A ‘The Memory Hierarchy

» Going down the
hierarchy
— Decreasing cost per bit
— Increasing capacity
— Increasing access time

— Decreasing frequency of
access to the memory
by the processor

Figure 1.14 The Memory Hierarchy

=y

Q\
Qiﬁ Secondary Memory

* Auxiliary memory

* External

* Nonvolatile

» Used to store program and data files

=y

Q\
% Roadmap

— Basic Elements

— Processor Registers

— Instruction Execution
— Interrupts

— The Memory Hierarchy

= Cache Memory
— |/O Communication Techniques

=y

,Q\
@Eﬁs Cache Memory

* Invisible to the OS

— Interacts with other memory management
hardware

* Processor must access memory at least
once per instruction cycle

— Processor speed faster than memory access
speed

» Exploit the principle of locality with a small
fast memory

=y

/‘Q\
@Eﬁ) Principal of Locality

* More details later but in short ...
» Data which is required soon is often close

to the current data

— |f data is referenced, then it's neighbour might
be needed soon.

o
a8
AN

=y

Q\
@Eﬁ Cache and Main Memory

Byte or Block Transfer
word transfer

r*_ﬂ'\ (=
£
[CPU ‘ | ; Cache I I E Main Memory

Figure 1.16 Cache and Main Memory

=y

,Q\
@Eﬁ) Cache Principles

» Contains copy of a portion of main
memory

* Processor first checks cache
— If not found, block of memory read into cache

» Because of locality of reference, likely
future memory references are in that block

o
[
peat

=y

N n Cache/Main-Memory
\ Structure

Line Memory
Number Tag Block address
s e e e e e R 7
O B ..o . i 1
] e 2 1 sy |
2 | 21 1 L Block
: : ' 3 | 1 (Kwords)
| ! a | (. i
Lo . I ! l
L . : T]
T e I
c-1 N | | i
_____ BlockLength ' |
el (K Words) di : :
I ® |
| L]
(a) Cache ! g i
: |
I I
I I
I I
EEEEEeTs =1
I I
I I
! I
I | S Block
: |
! l
g i | :_________|
Word
Length
(b) Main memory

Figure 1.17 Cache/Main-Memory Structure

Cache Read Operation

RA -read address

Receive address
RA from CPU

Access main
memory for block
containing RA

Allocate cache
slot for main
memory block

Fetch RA word
and deliver
to CPU

I;;ﬁory Hock Deliver RA word
to CPU

into cache slot

@

Figure 1.18 Cache Read Operation

Q\
Eﬁ Cache Design Issues

* Main categories are:
— Cache size
— Block size
— Mapping function
— Replacement algorithm
— Write policy

=y

\
% Size issues

« Cache size

— Small caches have significant impact on
performance

e Block size

— The unit of data exchanged between cache
and main memory

— Larger block size means more hits
— But too large reduces chance of reuse.

=y

o
a8
AN

,Q\
@Eﬁ) Mapping function

 Determines which cache location the block
will occupy

 Two constraints:

— When one block read in, another may need to
be replaced

— Complexity of mapping function increases
circuitry costs for searching.

o
[
peat

=y

,r@\
@Eﬁ) Replacement Algorithm

* Chooses which block to replace when a
new block is to be loaded into the cache.

* |deally replacing a block that isn't likely to
be needed again
— Impossible to guarantee

 Effective strategy is to replace a block that
has been used less than others
— Least Recently Used (LRU)

S wiite policy

* Dictates when the memory write operation
takes place

« Can occur every time the block is updated

« Can occur when the block is replaced
— Minimize write operations
— Leave main memory in an obsolete state

=y

Q\
§§ Roadmap

— Basic Elements

— Processor Registers

— Instruction Execution
— Interrupts

— The Memory Hierarchy
— Cache Memory

-3 [/O Communication Techniques

=y

,Q\
@Eﬁs /O Techniques

* When the processor encounters an
instruction relating to 1/O,

— It executes that instruction by issuing a

command to the appropriate 1/O module.

* Three techniques are possible for I/O
operations:
— Programmed 1|/O
— Interrupt-driven 1/O
— Direct memory access (DMA)

=y

,Q\
@Eﬁs Programmed |/O

* The I/O module performs the requested
action

— then sets the appropriate bits in the I/O status
register

— but takes no further action to alert the
processor.
* As there are no interrupts, the processor
must determine when the instruction is

complete

=y

%’\ Programmed I/0
@ Instruction Set

e Control
— Used to activate and instruct device

o Status
— TJests status conditions

* Transfer
— Read/write between process register and device

o
a8
AN

=y

= Programmed
¥ 1/0 Example

« Data read in a word at a
time
— Processor remains in

status-checking look while
reading

=y

Issue Read
—p» command to [|CPU=T/O
[/O module

Read status
of IO
modul

/O=-»CPU

Error
condition
Read word
from [/O [/O=-»CPU
Module
.W Moy CPU=-»memory
into memory

Next instruction

(a) Programmed I/O

,Q\
@iﬁs Interrupt-Driven I/O

* Processor issues an |/O command to a
module
— and then goes on to do some other useful

work.

* The I/O module will then interrupt the
processor to request service when it is
ready to exchange data with the
Processor.

=y

Issue Read PU=-1/O

K S { I n te rru pt- —> ;:/0(;11::11;'331;0 __ _’eDlgeSOmething
\ D rlven I/O Read status

of /O
modu

- = = = [nterrupt

L 1/O—+CPU

 Eliminates needless
waiting

Error
: condition
— But everything passes Read) 1@
through processor. Read word
from I/O [/O-»CPU
Module
Was woed CPU=-»memory

into memory

Yes[®

Next instruction

(b) Interrupt-driven I/O

,r@\
%Eﬁ) Direct Memory Access

* Performed by a separate module on the
system

* \When needing to read/write processor
Issues a command to DMA module with:
— Whether a read or write is requested
— The address of the |/O device involved
— The starting location in memory to read/write
— The number of words to be read/written

Q\
% Direct Memory Access

2CPU->DMA
Do something
=Pelse

* |/O operation delegated t0 [rucrew

block command

DMA mOdU|e !IOI/'O module
* Processor only involved rrag

& - = = Interrupt

when beginning and modile [IDMA-CPU
en d I N g tra N Sfe . Next in!;mction |
° M UCh maore eﬂ:lCIent (¢) Direct memory access

=y

