
Chapter 1
Computer System Overview

Operating Systems:
Internals and Design Principles, 6/E

William Stallings

Roadmap

– Basic Elements
– Processor Registers
– Instruction Execution
– Interrupts
– The Memory Hierarchy
– Cache Memory
– I/O Communication Techniques

Operating System

• Exploits the hardware resources of one or
more processors

• Provides a set of services to system users
• Manages secondary memory and I/O

devices

A Computer’s
Basic Elements

• Processor
• Main Memory
• I/O Modules
• System Bus

Processor

• Controls operation, performs data
processing

• Two internal registers
– Memory address resister (MAR)
– Memory buffer register (MBR)

• I/O address register
• I/O buffer register

Main Memory

• Volatile
– Data is typically lost when power is removed

• Referred to as real memory or primary
memory

• Consists of a set of locations defined by
sequentially numbers addresses
– Containing either data or instructions

I/O Modules

• Moves data between the computer and the
external environment such as:
– Storage (e.g. hard drive)
– Communications equipment
– Terminals

• Specified by an I/O Address Register
– (I/OAR)

System Bus

• Communication among processors, main
memory, and I/O modules

Top-Level View

Roadmap

– Basic Elements
– Processor Registers
– Instruction Execution
– Interrupts
– The Memory Hierarchy
– Cache Memory
– I/O Communication Techniques

Processor Registers

• Faster and smaller than main memory
• User-visible registers

– Enable programmer to minimize main memory
references by optimizing register use

• Control and status registers
– Used by processor to control operating of the

processor
– Used by privileged OS routines to control the

execution of programs

User-Visible Registers

• May be referenced by machine language
– Available to all programs – application

programs and system programs
• Types of registers typically available are:

– data,
– address,
– condition code registers.

Data and
Address Registers

• Data
– Often general purpose
– But some restrictions may apply

• Address
– Index Register
– Segment pointer
– Stack pointer

Control and
Status Registers

• Program counter (PC)
– Contains the address of an instruction to be

fetched
• Instruction register (IR)

– Contains the instruction most recently fetched
• Program status word (PSW)

– Contains status information

Roadmap

– Basic Elements
– Processor Registers
– Instruction Execution
– Interrupts
– The Memory Hierarchy
– Cache Memory
– I/O Communication Techniques

Instruction Execution

• A program consists of a set of instructions
stored in memory

• Two steps
– Processor reads (fetches) instructions from

memory
– Processor executes each instruction

Basic Instruction Cycle

Instruction Fetch
and Execute

• The processor fetches the instruction from
memory

• Program counter (PC) holds address of
the instruction to be fetched next
– PC is incremented after each fetch

Instruction Register

• Fetched instruction loaded into instruction
register

• Categories
– Processor-memory,
– processor-I/O,
– Data processing,
– Control

Characteristics of a
Hypothetical Machine

Example of
 Program Execution

Roadmap

– Basic Elements
– Processor Registers
– Instruction Execution
– Interrupts
– The Memory Hierarchy
– Cache Memory
– I/O Communication Techniques

Interrupts

• Interrupt the normal sequencing of the
processor

• Provided to improve processor utilization
– Most I/O devices are slower than the

processor
– Processor must pause to wait for device

Common Classes
of Interrupts

Flow of Control
without Interrupts

Interrupts and the
 Instruction Cycle

Transfer of Control
via Interrupts

Instruction Cycle
with Interrupts

Short I/O Wait

Long I/O wait

Simple
Interrupt Processing

Changes in Memory and
Registers for an Interrupt

Multiple Interrupts

• Suppose an interrupt occurs while another
interrupt is being processed.
– E.g. printing data being received via

communications line.
• Two approaches:

– Disable interrupts during interrupt processing
– Use a priority scheme.

Sequential
Interrupt Processing

Nested
Interrupt Processing

Example of
Nested Interrupts

Multiprogramming

• Processor has more than one program to
execute

• The sequence the programs are executed
depend on their relative priority and
whether they are waiting for I/O

• After an interrupt handler completes,
control may not return to the program that
was executing at the time of the interrupt

Roadmap

– Basic Elements
– Processor Registers
– Instruction Execution
– Interrupts
– The Memory Hierarchy
– Cache Memory
– I/O Communication Techniques

Memory Hierarchy

• Major constraints in memory
– Amount
– Speed
– Expense

• Faster access time, greater cost per bit
• Greater capacity, smaller cost per bit
• Greater capacity, slower access speed

The Memory Hierarchy

• Going down the
hierarchy
– Decreasing cost per bit
– Increasing capacity
– Increasing access time
– Decreasing frequency of

access to the memory
by the processor

Secondary Memory

• Auxiliary memory
• External
• Nonvolatile
• Used to store program and data files

Roadmap

– Basic Elements
– Processor Registers
– Instruction Execution
– Interrupts
– The Memory Hierarchy
– Cache Memory
– I/O Communication Techniques

Cache Memory

• Invisible to the OS
– Interacts with other memory management

hardware
• Processor must access memory at least

once per instruction cycle
– Processor speed faster than memory access

speed
• Exploit the principle of locality with a small

fast memory

Principal of Locality

• More details later but in short …
• Data which is required soon is often close

to the current data
– If data is referenced, then it’s neighbour might

be needed soon.

Cache and Main Memory

Cache Principles

• Contains copy of a portion of main
memory

• Processor first checks cache
– If not found, block of memory read into cache

• Because of locality of reference, likely
future memory references are in that block

Cache/Main-Memory
Structure

Cache Read Operation

Cache Design Issues

• Main categories are:
– Cache size
– Block size
– Mapping function
– Replacement algorithm
– Write policy

Size issues

• Cache size
– Small caches have significant impact on

performance
• Block size

– The unit of data exchanged between cache
and main memory

– Larger block size means more hits
– But too large reduces chance of reuse.

Mapping function

• Determines which cache location the block
will occupy

• Two constraints:
– When one block read in, another may need to

be replaced
– Complexity of mapping function increases

circuitry costs for searching.

Replacement Algorithm

• Chooses which block to replace when a
new block is to be loaded into the cache.

• Ideally replacing a block that isn’t likely to
be needed again
– Impossible to guarantee

• Effective strategy is to replace a block that
has been used less than others
– Least Recently Used (LRU)

Write policy

• Dictates when the memory write operation
takes place

• Can occur every time the block is updated
• Can occur when the block is replaced

– Minimize write operations
– Leave main memory in an obsolete state

Roadmap

– Basic Elements
– Processor Registers
– Instruction Execution
– Interrupts
– The Memory Hierarchy
– Cache Memory
– I/O Communication Techniques

I/O Techniques

• When the processor encounters an
instruction relating to I/O,
– it executes that instruction by issuing a

command to the appropriate I/O module.
• Three techniques are possible for I/O

operations:
– Programmed I/O
– Interrupt-driven I/O
– Direct memory access (DMA)

Programmed I/O

• The I/O module performs the requested
action
– then sets the appropriate bits in the I/O status

register
– but takes no further action to alert the

processor.
• As there are no interrupts, the processor

must determine when the instruction is
complete

Programmed I/O
Instruction Set

• Control
– Used to activate and instruct device

• Status
– Tests status conditions

• Transfer
– Read/write between process register and device

Programmed
I/O Example

• Data read in a word at a
time
– Processor remains in

status-checking look while
reading

Interrupt-Driven I/O

• Processor issues an I/O command to a
module
– and then goes on to do some other useful

work.
• The I/O module will then interrupt the

processor to request service when it is
ready to exchange data with the
processor.

Interrupt-
Driven I/O

• Eliminates needless
waiting
– But everything passes

through processor.

Direct Memory Access

• Performed by a separate module on the
system

• When needing to read/write processor
issues a command to DMA module with:
– Whether a read or write is requested
– The address of the I/O device involved
– The starting location in memory to read/write
– The number of words to be read/written

Direct Memory Access

• I/O operation delegated to
DMA module

• Processor only involved
when beginning and
ending transfer.

• Much more efficient.

