Operating Systems:
Internals and Design Principles, 6/E
William Stallings

Chapter 2
Operating System Overview

Q\
% Roadmap

- Operating System Objectives/Functions
— The Evolution of Operating Systems
— Major Achievements

— Developments Leading to Modern Operating
Systems

— Microsoft Windows Overview

— UNIX Systems
— Linux

=y

,Q\
@Eﬁ) Operating System

* A program that controls the execution of
application programs

* An interface between applications and
hardware

* Main objectives of an OS:
— Convenience
— Efficiency
— Ability to evolve

=y

Layers and Views

End
User

Programmer '

V- % 7]
Application Programs Operating-
System
Designer
Utilities
Operating System

Computer Hardware

Figure 2.1 Layers and Views of a Computer System

%ﬁ Services Provided
@ by the Operating System
* Program development

— Editors and debuggers.

* Program execution

— OS handles scheduling of numerous tasks
required to execute a program

* Access |/O devices
— Each device will have unique interface
— OS presents standard interface to users

o |
&Eﬁ \ Services cont...

 Controlled access to files

— Accessing different media but presenting a
common interface to users

— Provides protection in multi-access systems

« System access

— Controls access to the system and its
resources

=y

o |
&Eﬁ \ Services cont...

* Error detection and response
— Internal and external hardware errors
— Software errors
— Operating system cannot grant request of
application
* Accounting
— Collect usage statistics
— Monitor performance

=y

/‘Q\
@Eﬁ The Role of an OS

* A computer is a set of resources for the
movement, storage, and processing of
data.

* The OS is responsible for managing these
resources.

o
a8
AN

=y

%’ﬁ Operating System
@ as Software

* The OS functions in the same way as an
ordinary computer software

— It is a program that is executed by the CPU

* Operating system relinquishes control of
the processor

=y

%ﬁ Evolution of Operating
@ Systems

* Operating systems will evolve over time

— Hardware upgrades plus new types of
hardware

— New services
— Fixes

=y

Q\
% Roadmap

— Operating System Objectives/Functions

- The Evolution of Operating Systems
— Major Achievements

— Developments Leading to Modern Operating
Systems

— Microsoft Windows Overview

— UNIX Systems
— Linux

=y

% \ Evolution of
® Operating Systems

* It may be easier to understand the key
requirements of an OS by considering the
evolution of Operating Systems

« Stages include
— Serial Processing
— Simple Batch Systems
— Multiprogrammed batch systems
— Time Sharing Systems

,Q\
@Eﬁ) Serial Processing

* No operating system

* Machines run from a console with display
lights, toggle switches, input device, and
printer

* Problems include:

— Scheduling
— Setup time

=y

,Q\
@Eﬁ) Simple batch system

» Early computers were extremely
expensive

— Important to maximize processor utilization

* Monitor
— Software that controls the sequence of events
— Batch jobs together
— Program returns control to monitor when

finished

o
[
peat

®

 Monitor controls the
sequence of events

 Resident Monitor is software
always in memory

* Monitor reads in job and
gives control

Boundary

e Job returns control to monitor

2
§ﬁ) " Monitor’s perspective

Monitor <

Interrupt
processing

Device
drivers

Job
sequencing

Control language
interpreter

User
program
area

Figure 2.3 Memory Layout for a
Resident Monitor

=y

/‘Q\
&Eﬁ) Job Control Language

» Special type of programming language to
control jobs
* Provides instruction to the monitor

— What compiler to use
— What data to use

=y

Features

* Memory protection for monitor

— Jobs cannot overwrite or alter
* Timer

— Prevent a job from monopolizing system
* Privileged instructions

— Only executed by the monitor

* Interrupts

§§'\ Desirable Hardware
9

=y

,Q\
@Eﬁs Modes of Operation

 User Mode

— User program executes in user mode

— Certain areas of memory protected from user
access

— Certain instructions may not be executed

» Kernel Mode
— Monitor executes in kernel mode
— Privileged instructions may be executed, all

memory accessible.

%‘\ Multiprogrammed
@ Batch Systems

« CPU is often idle

— Even with automatic job sequencing.
— |1/O devices are slow compared to processor

Read one record from file 15 us
Execute 100 instructions 1 us
Write one record to file 15 us
TOTAL 31 ps

Percent CPU Utilization = %1 =0032=32%

=y

Figure 2.4 System Utilization Example

Q\
%}iﬁ Uniprogramming

* Processor must wait for I/O instruction to
complete before preceding

Program A Run Wait Run Wait

Time »

(a) Uniprogramming

Q\
@iﬁ Multiprogramming

* When one job needs to wait for |/O, the
processor can switch to the other job

Program A

Program B

Combined

Run Wait Run Wait
Wait| Run Wait Run Wait
Run | Run e Run | Run s
A B Wait A B Wait
Time »

(b) Multiprogramming with two programs

=y

Program A

Program B

Program C

Combined

Multiprogramming

Run Wait Run Wait
Wait| Run Wait Run Wait
Wait | Run Wait Run Wait
RAm Rll;n R(!:lll Wait R:n Rll;n R(t:m Wait
Time >

(¢) Multiprogramming with three programs

,Q\
@Eﬁs Time Sharing Systems

* Using multiprogramming to handle multiple
Interactive jobs

* Processor’s time is shared among multiple
users

* Multiple users simultaneously access the
system through terminals

Lo}
[

=y

R
\
@Eﬁs Early Example: CTSS
« Compatible Time-Sharing System (CTSS)
— Developed at MIT as project MAC
* Time Slicing:
— When control was passed to a user
— User program and data loaded
— Clock generates interrupts about every 0.2

SecC
— At each interrupt OS gained control and could
assign processor to another user

=y

CTSS Operation

0 0 0
~ Monitor _ Monitor _ Monitor
5000 5000 5000
1 JOB 3
JOB1
JOB 2 .
20000 (JOB 2)
Free 25000 25000
Free Free
32000 32000 32000
(a) (®) ()
0 0 0
Monitor _ Monitor _ Monitor
5000 5000 5000
JOB1 JOB 4
15000 : JOB 2
(JOB 1)
20000 20000
% (JOB 2) % (JOB 2) <
25000 25000 25000
Free Free Free
32000 32000 32000
(d) (e))

Figure 2.7 CTSS Operation

3
\
% Problems and Issues

®

* Multiple jobs in memory must be protected
from each other’s data

* File system must be protected so that only
authorised users can access

 Contention for resources must be handled
— Printers, storage etc

Lo}
[

=y

Q\
% Roadmap

— Operating System Objectives/Functions
— The Evolution of Operating Systems
- Major Achievements

— Developments Leading to Modern Operating
Systems

=y

,Q\
@Eﬁs Major Advances

» Operating Systems are among the most
complex pieces of software ever
developed

* Major advances include:
— Processes
— Memory management
— Information protection and security
— Scheduling and resource management

o
— System

b\
% Process

* Fundamental to the structure of OS’s

* A process Is:
— A program in execution
— An instance of a running program

— The entity that can be assigned to and
executed on a processor

— A single sequential thread of execution, a
current state, and an associated set of system

resources.
[

%ﬁ Causes of Errors when
®

Designing System Software

 Error in designing an OS are often subtle
and difficult to diagnose

* Errors typically include:
— Improper synchronization
— Failed mutual exclusion
— Non-determinate program operation
— Deadlocks

%Q\ Components of
@ a Process

* A process consists of
— An executable program
— Associated data needed by the program

— Execution context of the program (or “process
state”)

* The execution context contains all
information the operating system needs to
manage the process E

=y

&
\
@Eﬁ) Memory Management
* The OS has 5 principal storage
management responsibilities
— Process isolation
— Automatic allocation and management
— Support of modular programming
— Protection and access control
— Long-term storage

=y

/‘Q\
@E\%A Virtual Memory

* File system implements long-term store

* Virtual memory allows programs to
address memory from a logical point of
view
— Without regard to the limits of physical

memory

=y

§ﬁ) \ Paging

 Allows process to be comprised of a
number of fixed-size blocks, called pages

 Virtual address is a page number and an
offset within the page

« Each page may be located anywhere In
main memory

=y

Virtual Memory

Al

A0 A2

AS

B.0| Bl |B2 |B3

AT

A9

AS

BS5 | B6

Main Memory

Main memory consists of a
number of fixed-length frames,
each equal to the size of a page.
For a program to execute, some
or all of its pages must be in
main memory.

‘...-‘,' z : P 1.\- .
0 0
1 1
2 2
3 3
4 4
5 5
6 6
7 User
8 program

B
9
10
User
program

A

\ﬁ-__ __J

Disk

Secondary memory (disk) can

hold many fixed-length pages. A
user program consists of some
number of pages. Pages for all
programs plus the operating system
are on disk, as are files.

Figure 2.9 Virtual Memory Concepts

Virtual Memory
Addressing

%ﬁ Information Protection
®

and Security

* The problem involves controlling access to
computer systems and the information
stored in them.

* Main issues are:
— Availability
— Confidentiality
— Data integrity
— Authenticity

=y

B .
% v Scheduling and
@ = Resource Management
» Key responsibility of an OS is managing
resources

* Resource allocation policies must
consider:
— Fairness
— Differential responsiveness
— Efficiency

=y

Key Elements of an
Operating System

Operating System
Service Call Service
from Process -1 Call
Handler (code)
Interrupt Ll gong- S'I!lort- o
from Process Interrupt erm erm Queues
Interrupt . Handler (code) Queue Queue
from 1O Short-Term
Scheduler
(code)
k4
Pass Control
to Process

Figure 2.11 Key Elements of an Operating System for Multiprogramming

-3
@Eﬁ) \ System Structure

* View the system as a series of levels

* Each level performs a related subset of
functions

* Each level relies on the next lower level to
perform more primitive functions

* This decomposes a problem into a number
of more manageable subproblems

OS Design Hierarchy

Table 2.4 Operating System Design Hierarchy

Level | Name Objects Example Operations
13 Shell User programming environment Statements in shell language
12 User processes User processes Quit, kill, suspend, resume
11 Directories Directories Create, destroy, attach, detach,
search, list
10 Devices External devices, such as printers, Open, close, read, write
displays, and keyboards
9 File system Files Create, destroy, open, close, read,
write
8 Communications | Pipes Create, destroy, open, close, read,
write
Virtual memory Segments, pages Read, write, fetch
Local secondary Blocks of data, device channels Read, write, allocate, free
store
S Primitive Primitive processes, semaphores, Suspend, resume, wait, signal
processes ready list
Interrupts Interrupt-handling programs Invoke, mask, unmask, retry
3 Procedures Procedures, call stack, display Mark stack, call, return
Instruction set Evaluation stack, microprogram Load, store, add, subtract, branch
interpreter, scalar and array data
1 Electronic Registers, gates, buses, etc. Clear, transfer, activate,
circuits complement

Gray shaded area represents hardware.

Q\
‘iﬁ Roadmap

— Operating System Objectives/Functions

— The Evolution of Operating Systems

— Major Achievements
-Developments Leading to Modern
Operating Systems

— Microsoft Windows Overview

— UNIX Systems

— Linux

=y

Approaches

 Various approaches have been tried,
categories include:
— Microkernel architecture
— Multithreading
— Symmetric multiprocessing
— Distributed operating systems
— Object-oriented design

%’\ Different Architectural
®

=y

i
@,xﬁs Microkernel Architecture

* Most early OS are a monolithic kernel
— Most OS functionality resides in the kernel.
* A microkernel assigns only a few essential
functions to the kernel
— Address spaces
— Interprocess communication (IPC)
— Basic scheduling

=y

2
@Eﬁs Multithreading

* Process iIs divided into threads that can
run concurrently

 Thread

— Dispatchable unit of work
— executes sequentially and is interruptible

* Process is a collection of one or more
threads

=y

% \ Symmetric
" multiprocessing (SMP)
 An SMP system has

— multiple processors

— These processors share same main memory
and 1/O facilities

— All processors can perform the same functions

* The OS of an SMP schedules processes
or threads across all of the processors.

/‘Q\
&Eﬁ SMP Advantages

* Performance
— Allowing parallel processing
 Availabllity
— Failure of a single process does not halt the
system

* Incremental Growth
— Additional processors can be added.

» Scaling
=y

R"\ Multiprogramming and
! Multiprocessing

Time i

Process 1
Process 2
Process 3 I
(a) Interleaving (multiprogramming, one processor)
Process 1 = B |]
Process 2 C ' 2 00)
Process 3 |
(b) Interleaving and overlapping (multiprocessing; two processors)
I Blocked [Running

Figure 2.12 Multiprogramming and Multiprocessing

%‘\ Distributed
® Operating Systems
* Provides the illusion of

— a single main memory space and
— single secondary memory space

» Early stage of development

=y

,Q\
% Object-oriented design

» Used for adding modular extensions to a
small kernel

* Enables programmers to customize an
operating system without disrupting
system integrity

=y

