Consequences of EC 5 for Danish best practise

Jørgen Munch-Andersen Danish Timber Information

- Danish Timber Code has approached Eurocode 5 except for fasteners
- Eurocodes replaces Danish Codes from 1 Jan 2009

- Danish Timber Code has approached Eurocode 5 except for fasteners
- Eurocodes replaces Danish Codes from 1 Jan 2009
- Most strength parameters should be declared in the CE-mark in accordance with prEN14592
- Eurocode 5 equations can be used where applicable, but Initial Type Testing (ITT) is needed for many types of fasteners

- Danish Timber Code has approached Eurocode 5 except for fasteners
- Eurocodes replaces Danish Codes from 1 Jan 2009
- Most strength parameters should be declared in the CE-mark in accordance with prEN14592
- Eurocode 5 equations can be used where applicable, but Initial Type Testing (ITT) is needed for many types of fasteners
- Eurocode 5 ought to give slightly conservative parameters

 Numerous problems using Eurocode 5 found when writing the chapter on timber structures in the handbook used by Danish Engineers (Ståbi)

- Numerous problems using Eurocode 5 found when writing the chapter on timber structures in the handbook used by Danish Engineers
- ITT not yet carried out for relevant fastener types
- Embedment strength not a declared parameter

- Numerous problems using Eurocode 5 found when writing the chapter on timber structures in the handbook used by Danish Engineers
- ITT not yet carried out for relevant fastener types
- Embedment strength not a declared parameter
- Load capacity for fasteners generally decreases
- Some common Danish connection types can no longer be used

Strength parameters

Dowel (F_{Johansen}): combination of

- Embedment strength of timber depends on density
- Yield moment of dowel depends on steel strength

Strength parameters

Dowel (F_{Johansen}): combination of

- Embedment strength of timber depends on density
- Yield moment of dowel depends on steel strength

Tension (F_{ax}): minimum of

- Withdrawal depends on shape of tread and density
- Pull-through depends on shape of head and density

Strength parameters

Dowel (F_{Johansen}): combination of

- Embedment strength of timber depends on density
- Yield moment of dowel depends on steel strength

Tension (F_{ax}): minimum of

- Withdrawal depends on shape of tread and density
- Pull-through depends on shape of head and density

Lateral load

- Combination of dowel and tension
- Eurocode: $F_v = F_{Johansen} + F_{ax}/4$

Density 1

- Well established that strength of fasteners depend on timber density
- Characteristic densities in EN 338 decrease rapidly with decreasing strength class:

C30	C24	C18	C14
380 kg/m ³	350 kg/m ³	320 kg/m ³	290 kg/m ³

Density 1

- Well established that strength of fasteners depend on timber density
- Characteristic densities ensities in EN 338 decrease rapidly with decreasing strength class:

C30	C24	C18	C14
380 kg/m ³	350 kg/m ³	320 kg/m ³	290 kg/m ³

- Densities below 350 kg/m³ very hard to find
- Up to now 350 kg/m³ has been presupposed for all strength classes in Denmark
- C18 is most widely uses in Denmark looses 10 % of density

Density 2

- Strength class for Nordic timber is usually governed by knot sizes – not the clear wood properties
- This might explain why the experience using 350 kg/m³ is good
- If different grow conditions causes other relations for timber grown in other places EN 338 ought to take account of regional differences

Axially loaded fasteners

- Head pull-through
- Withdrawal

Head pull-through

- Eurocode value formally given only for smooth nails
- Very low strength given

Head pull-through

- Eurocode value formally given only for smooth nails
- Very low strength given
- Should be similar for threaded nails and screws
- Nails: Depends on ρ²!
- Screws: Depends on ρ^{0.8}?
- A linear relationship appears reasonable for test values

Head pull-through

- Eurocode value formally given only for smooth nails
- Very low strength given
- Should be similar for threaded nails and screws
- Nails: Depends on ρ²!
- Screws: Depends on $\rho^{0.8}$?

- A linear relationship appears reasonable for test values
- Correction from $\rho = 350$ to $\rho = 410$ with $\rho^{0.8}$ makes only 3% difference form linear correction!

Correction of measured strength for density

Example:

Head pull through, threaded nail, d_{head} = 5.5 mm

- $F_{mean} = 1500 \text{ N}$, CoV = 12.5%, $\rho = 475 \text{ kg/m}^3$
- $f_{k475} \sim 0.75 \cdot 1500/5.5^2 = 36,4 \text{ MPa}$
- Approved institute corrects to $\rho = 350 \text{ kg/m}^3$ assuming linear relationship:
 - $f_{k,350}$ = 26.8 MPa (~ 3 x EC5 for smooth nail) Using EC5's ρ^2 -dependency unsafe for high ρ
- Correction must be done with ρ^2 : $f_{k,350} = 19.8 \text{ MPa} (\sim 2.3 \text{ x EC5 for smooth nail})$

Correction of measured strength for density

Example:

Head pull through, threaded nail, d_{head} = 5.5 mm

- $F_{mean} = 1500 \text{ N}, CoV = 12.5\%, \rho = 475 \text{ kg/m}^3$
- $f_{k475} \sim 0.75 \cdot 1500/5.5^2 = 36,4 \text{ MPa}$
- Approved institute corrects to $\rho = 350 \text{ kg/m}^3$ assuming linear relationship:
 - $f_{k,350}$ = 26.8 MPa (~ 3 x EC5 for smooth nail) Using EC5's ρ^2 -dependency unsafe for high ρ
- Correction must be done with ρ^2 : $f_{k,350}$ = 19.8 MPa (~ 2.3 x EC5 for smooth nail) • Preferable to use timber with smaller density for tests
- or a range of densities including low densities

Withdrawal – smooth nails

- Strength parameters given are NOT conservative!
 - especially not for round nails
- No difference in EC5 between round and square nails
- Reduction factor 2/3 for timber near to saturation not enough according to old Danish tests, might be 1/3

Withdrawal – smooth nails

- Strength parameters given are NOT conservative!
 - especially not for round nails
- No difference in EC5 between round and square nails
- Reduction factor 2/3 for timber near to saturation not enough according to old Danish tests, might be 1/3
- Minimum penetration length for full strength is 12d and severe reduction for smaller length - nil for 8d
- Danish code has 8 d + point

Withdrawal – smooth nails

- Strength parameters given are NOT conservative!
 - especially not for round nails
- No difference in EC5 between round and square nails
- Reduction factor 2/3 for timber near to saturation not enough according to old Danish tests, might be 1/3
- Minimum penetration length for full strength is 12d and severe reduction for smaller length - nil for 8d
- Danish code has 8 d + point
- High withdrawal strength for smooth nail encourage the use of smooth nails for fastening of eg. roof battens
 - which might cause wind storm damage

Roof of steel plates

- 300 m² blew off
- Wind speed far from characteristic
- Other part of the roof blew off 3 years ago
- No strengthening considered!

Cause

Battens fastened with smooth nails (square and rusty)

Withdrawal - threaded nails

- Strength parameter must be declared individually
- Tests show no significant influence of changing moisture so the reduction factor 2/3 for timber near to saturation should not be applied for threaded nails (and pull-through)

Withdrawal – threaded nails

- Strength parameter must be declared individually
- Tests show no significant influence of changing moisture so the reduction factor 2/3 for timber near to saturation should not be applied for threaded nails (and pull-through)
- Minimum penetration length for full strength is 8d and severe reduction for smaller length - nil for 6d
- Danish code has 5 d + point

Withdrawal – screws 1

- Very complicated formula given and only for "old fashioned" screws with d = 6-12 mm
- The simple formula 0.035 d ℓ_{pen} ρ can replace within 10% for d = 6-10 mm
- ITT will give a single strength parameter, independent on e.g. length. A possible diameter dependency will be included in declared parameter
- Separate spacing requirements for withdrawal and only for timber thickness 12d (which members thickness?)

Withdrawal – screws 2

- No significant dependency on diameter for d = 4-6 mm
- Connector screws and modern wood screws similar
- Fits well with (simplified)
 Eurocode formula

Laterally loaded fasteners

- Nails, timber to timber
- Screws, timber to timber
- Steel to timber

Laterally loaded nails – timber to timber

Eurocode:

- Dowel load capacity from Johansen-theory with embedment strength and yield moment of fastener
- Rope-effect from friction and inclination

Danish code:

- Presupposes failure-mode f
 - mode e not possible due to required penetration length
 - mode d somewhat prevented by the head
- Rope-effect included by reduced penetration length for threaded nails

Laterally loaded screws

- Eurocode still focus on screws with smooth shank penetrating into pointside
- Eurocode suggests d_{eff} = 1.1 x d_{root}
 for the treaded part of screws

Laterally loaded screws

- Eurocode still focus on screws with smooth shank penetrating into pointside
- Eurocode suggests d_{eff} = 1.1 x d_{root}
 for the treaded part of screws
- d_{eff} not likely to be the same for embedment strength f_h and yield moment M_y when measured

Laterally loaded screws

- Eurocode still focus on screws with smooth shank penetrating into pointside
- Eurocode suggests d_{eff} = 1.1 x d_{root}
 for the treaded part of screws
- d_{eff} not likely to be the same for embedment strength f_h and yield moment M_v when measured
- prEN 14592 does not deal with neither d_{eff} nor f_h
- Most straight forward to declare f_h (for diameter d) and M_v

Measured embedment strength for screws

- $d_{root}/d \sim 0.6 \Rightarrow d_{eff} = 1.1 \times d_{root} = 0.66 d$
- Measured reduction factor for screws 0.45 0.7
- Hansen assumes factor to depend on surface roughness

Laterally loaded nails - steel to timber

Eurocode:

- Separate formulas for thick and thin steel-plates (head fixed against rotation or not)
- Thick plate t ≥ d, thin plate t ≤ d/2

Danish code:

- Head assumed fixed against rotation
- Typical d = 4 mm and t = 2 mm
- Timber to timber strength increased by 25 % (larger rope-effect when not pull-through)

Higher values will appear in an ETA-agreement for most commonly used connector nails and screws (smaller penetration length, larger rope-effect, fixed head)

Spacing parallel to grain

- If fasteners not staggered 1d Eurocode 5 requires increased spacing (14d)
 - or reduced load capacity

Spacing parallel to grain

- If fasteners not staggered 1d Eurocode 5 requires increased spacing (14d)
 - or reduced load capacity

15d — 10d — 5d — 5d — 5d — 5d — 5d

Steel connector plates:

- Spacing can be reduced by factor 0.7
- Not possible to stagger
- Not specified if increased spacing requirement can be reduced by 0.7
- Very questionable if staggering is meaningful for small diameters

Common connection not allowed by EC5

- 45 mm member with connecter-plates on both sides
- Eurocode requires 4d from point to opposite site
 Minimum member thickens for d = 4 mm:
 - (4 + 8)d = 48 mm
- Danish code requires only 3d from point to opposite site

- Initial Type Testing (ITT) is necessary for most types of fasteners to establish strength parameters at all
- For types of fasteners covered by Eurocode 5 the strength parameters are mostly - but not always conservative

- Initial Type Testing (ITT) is necessary for most types of fasteners to establish strength parameters at all
- For types of fasteners covered by Eurocode 5 the strength parameters are mostly - but not always conservative
- The dependency on density should in general be similar for nails and screws
- Strict rules are needed for correcting measured strength parameters for density
- Preferable to carry out tests with a natural span of densities rather than a fixed density

- Minimum penetration lengths appears very conservative
- Correction for changing moisture content might be unsafe for withdrawal of smooth nails but irrelevant for threaded nails and pull-through

- Minimum penetration lengths appears very conservative
- Correction for changing moisture content might be unsafe for withdrawal of smooth nails but irrelevant for threaded nails and pull-through
- For screws either embedment strength for diameter of thread or effective diameter should be a declared parameter
- Spacing requirement in grain direction unnecessary and unclear for connector plates

- Minimum penetration lengths appears very conservative
- Correction for changing moisture content might be unsafe for withdrawal of smooth nails but irrelevant for threaded nails and pull-through
- For screws either embedment strength for diameter of thread or effective diameter should be a declared parameter
- Spacing requirement in grain direction unnecessary and unclear for connector plates
- Replacing the Danish timber code with Eurocode 5 reduces the load capacities of most fasteners significantly
- Rules for two-sided nailing a catastrophe for Danish

