Электрохимические методы анализа

Определение: ЭХМА - это методы качественного и количественного анализа веществ, основанные на электрохимических процессах, протекающих в исследуемом растворе или на границе соприкасающихся фаз и связанных с изменением структуры, химического состава или концентрации

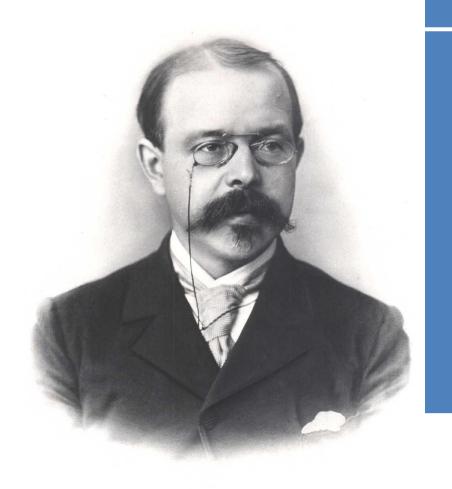
Классификация.

- ЭХМА подразделяют на методы :
- 1. с протеканием электрохимической реакции
- 2. без протекания электрохимической реакции
- Первая группа методов включает методы:
- 1.1.с наложением внешнего напряжения
- 1.2. без наложения внешнего напряжения

Классификация электрохимических методов анализа

По измеряемому параметру ЭХМА подразделяются на:

Название	Измеряе-	Функцио-	Косвенный
метода	мая	нальная	метод-
	величина	зависи-	титрование
		мость	
Потенцио-	E, B	E=f(C)	Потенцио-
метрия			метрическое
Вольтампе-	І, мкА	I=f(E)	Амперо-
рометрия			метрическое
Кулоно-	Q, Кл	Q=f(C)	Кулоно-
метрия			метрическое
Кондукто-	é ,См/см	æ=f(C)	Кондукто-
метрия			метрическое


Основные понятия и термины.

- Электрод система из двух электропроводящих фаз, одна из которых имеет электронную проводимость, а другая ионную.
- Электроды подразделяют на индикаторные, вспомогательные и сравнения.
- Пример электрода металл, погруженный в раствор соли этого металла.

Основные понятия и термины.

• Потенциал электрода - это потенциал, возникающий на границе раздела фаз вследствие образования двойного электрического слоя. При отсутствии тока через электрод его потенциал имеет равновесное значение, определяемое по уравнению Нернста:

$$E = E^{0} + \frac{RT}{nF} ln \frac{[Me^{n+}]}{[Me^{0}]}$$

Вальтер Нернст. (1864–1941)

Один из основоположников физической химии (1864–1941)

W. Nemst.

Основные понятия и термины

- Поляризация электрода изменение значения его потенциала при протекании через электрод электрического тока
- Электрохимическая реакция гетерогенная реакция, в ходе которой электроны переходят через границу раздела фаз, то есть через электрод протекает электрический ток.

ПОТЕНЦИОМЕТРИЯ

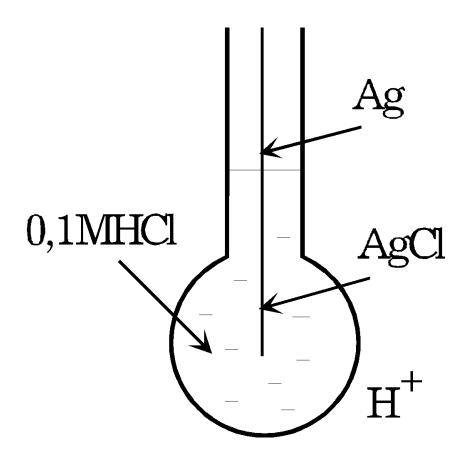
• Определение: потенциометрия - метод определения концентрации веществ непосредственным измерением потенциала индикаторного электрода по отношению к электроду сравнения.

Типы электродов, используемых в потенциометрии

- Индикаторные электроды:
- окислительно-восстановительные электроды, например, платиновый в контакте с окислительно-восстановительной системой
- металлические I, II и III рода
- *мембранные* ионселективные электроды

окислительно-восстановительные электроды

• Это инертные электроды, их потенциал обратимо зависит от соотношения концентраций окислительновосстановительной пары, присутствующей в растворе, согласно уравнению Нернста, например, в растворе, содержащем Fe^{2+} и Fe^{3+} , лотенциал платиновога эле (града будет равен: $E = E^0 + \frac{1}{nF} \ln \frac{1}{[Fe^{2+}]}$


Металлические электроды

- І рода металл в растворе своей соли, например $Ag \, B \, pacтворе \, AgNO_3$, $Cu \, B \, pacтворе \, CuSO_4$,
- **II рода** металл, покрытый своей малорастворимой солью и опущенный в раствор, содержащий анион этой соли, например Ag/AgCl/Cl⁻, Hg/Hg₂Cl₂/Cl⁻,
- **III рода** металл, покрытый малорастворимой солью и опущенный в раствор, содержащий другой катион, образующий малорастворимое соединение с этим анионом, например, ртутный электрод, опущенный в насыщенный раствор $Hg_2C_2O_4$ и CaC_2O_4 , содержащий избыток иснов кальния

Мембранные ионселективные электроды

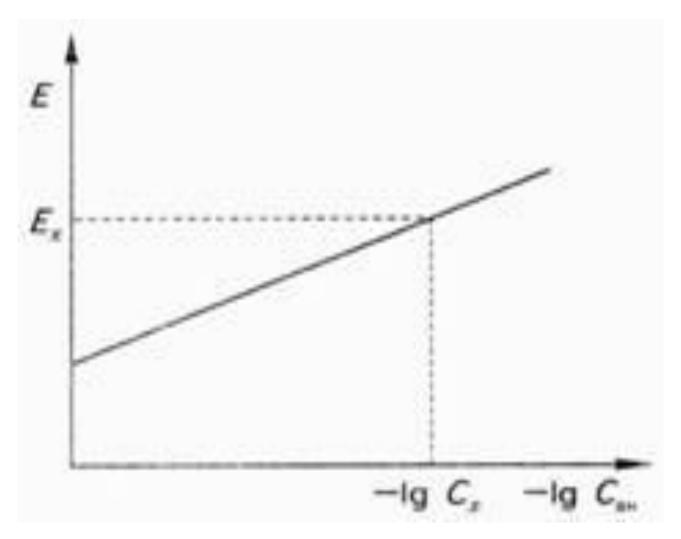
• изготовлены на основе твердых или жидких мембран, главным свойством которых является проницаемость определенного вида ионов в направлении от раствора с большей активностью этих ионов к раствору с меньшей активностью. В результате такого перемещения на поверхности мембраны возникает потенциал, препятствующий дальнейшему перемещению ионов, который будет зависеть от разности активностей ионов в растворе по обе стороны мембраны.

Стеклянный электрод

 $E = K - 0.059 \text{lga}(H^+) = K + 0.059 \text{ pH}.$

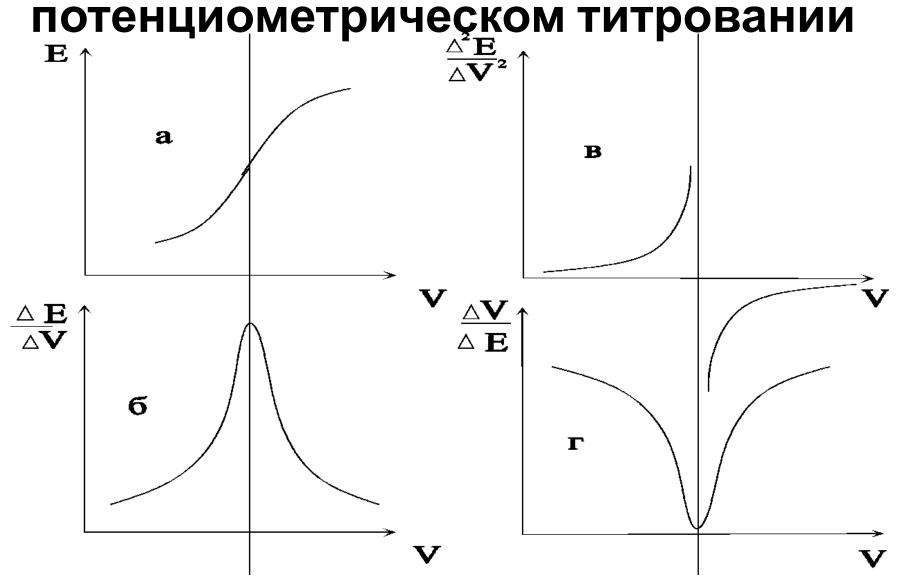
Типы электродов, используемых в потенциометрии

• Электроды сравнения: электроды, потенциал которых не зависит от концентрации ионов, участвующих в электродной реакции, чтобы при измерении их потенциал всегда оставался постоянным. Этим требованиям удовлетворяют электроды II рода - хлоридсеребряный и каломельный


Хлоридсеребряный электрод

$$E = E^{0} + \frac{RT}{nF} ln \frac{[Ag^{+}]}{[Ag^{0}]} = E^{0} + \frac{RT}{nF} ln \frac{\Pi P_{AgCl}}{[Cl^{-}]} = const - 0,059 lg[Cl^{-}]$$

потенциал этого электрода будет зависеть лишь от концентрации хлорид-ионов, которую выбирают достаточно большой (обычно используют насыщенные растворы КСІ), и поэтому потенциал такого электрода при прохождении через него небольшого тока не меняется


Методы определения концентрации в

- потенциометрии
 Прямая потенциометрия: Измерение потенциал индикаторного электрода по отношению к электроду сравнения и концентрация определяемого вещества рассчитывается по уравнению Нернста. На практике более удобным способом является использование градуировочного графика в координатах Е - рС, построенному по серии стандартных растворов
- Потенциометрическое титрование

Градуировочный график для определения концентрации методом прямой потенциометрии

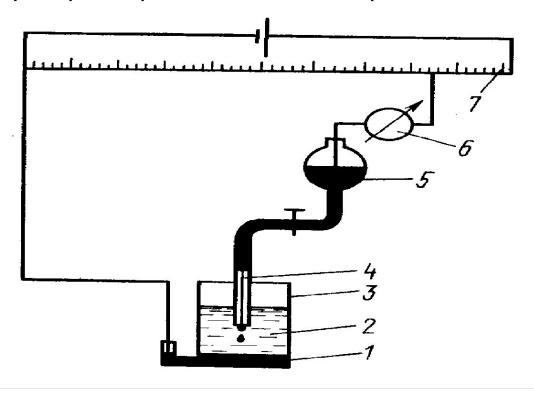
Определение точки эквивалентности в

Преимущества метода потенциометрического

- **ТИТРОВАНИЯ** Возможность титрования мутных и окрашенных растворов
- Возможность определения смеси веществ
- Возможность титрования в неводных растворителях
- Возможность автоматизации анализа, например, титрование до заданного значения pH.
- Возможность использования всех типов химических реакций.
- Возможность использования различных типов индикаторных электродов, в том числе ионселективных, для повышения избирательности определения

серии "Эксперт-001": слева - переносной, справа - лабораторный

Общий вид прибора «Эксперт-001»



Вольтамперометрия

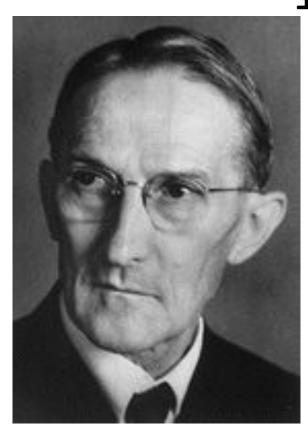

• Определение: вольтамперометрия - группа методов электрохимического анализа, основанных на измерении зависимости *силы тока* от величины *потенциала* рабочего электрода

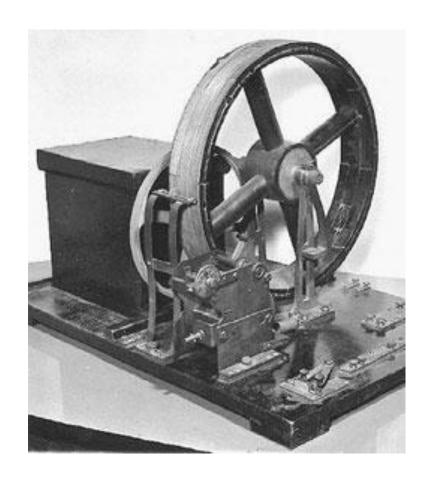
Схема полярографической

- **УСТАНОВКИ** 1-Вспомогательный электрод (донная ртуть), 2- анализируемый раствор,
- 3- ячейка, 4- ртутный капающий электрод, 5- резервуар с ртутью,
- 6- амперметр, 7- реохорд, 8- источник напряжения

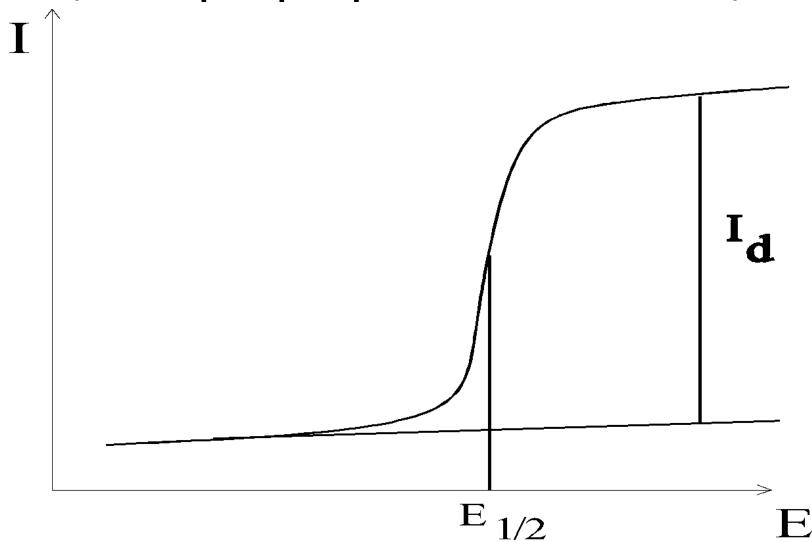
Ярослав Гейровский (1890-1967) Лауреат Нобелевской премии

Портре

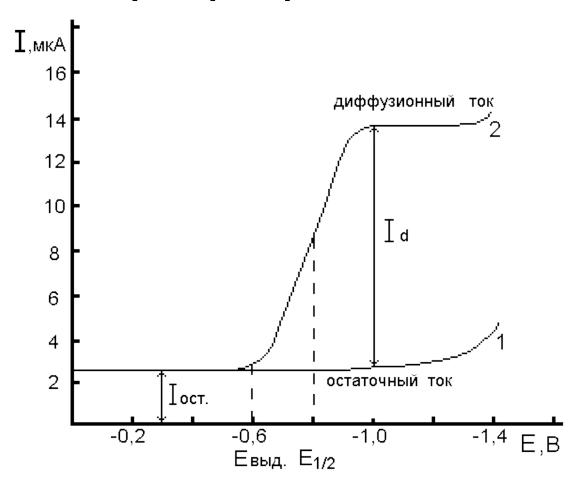
T



Памятник в



Первый полярограф


В 1925 году Я.Гейровский и М. Шиката сконструировали первый полярограф, позволивший автоматически регистрировать поляризационные кривые.

Полярограмма (полярографическая волна)

Полярограмма (полярографическая волна)

Основные уравнения в полярографии

Уравнение, описывающее полярограмму, было выведено *Гейровским и Ильковичем*:

$$E = E_{1/2} + \frac{RT}{nF} ln \frac{l_d - l}{l}$$

Потенциал полуволны $\mathbf{E}_{1/2}$ представляет собой потенциал той точки волны, где ток равен половине своего предельного значения. *Потенциал полуволны* не зависит от концентрации и является *качественной характеристикой* вещества. По значению потенциала полуволны в данном фоновом электролите можно провести идентификацию веществ, присутствующих в растворе, то есть провести качественный анализ.

Основные уравнения в

ПОЛЯРОГРАФИИ
Уравнение, связывающее величину предельного тока с концентрацией, для ртутного капающего электрода вывел *Илькович*:

 $I_d = 605 nD^{1/2}m^{2/3}t^{1/6}C$

где n - число электронов, участвующих в электрохимической реакции, D - коэффициент диффузии вещества, см²/с, m - масса ртути (мг), вытекающая из капилляра за 1 секунду, t - период капания, сек,

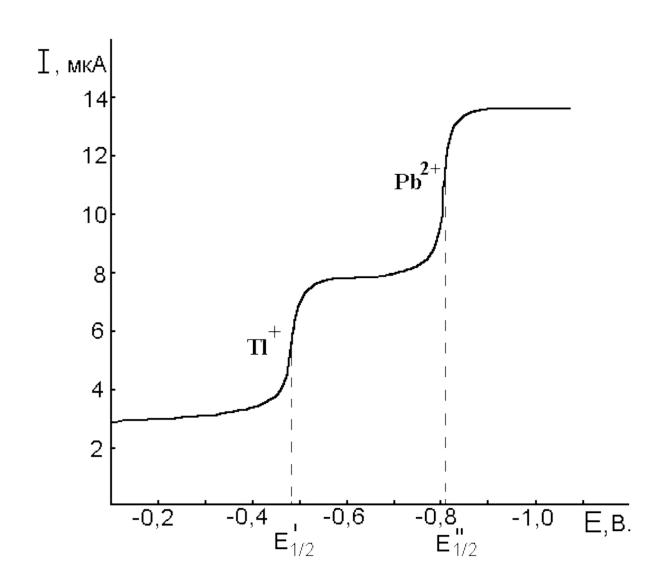
С - концентрация вещества, ммоль/л. Уравнение Ильковича можно представить в виде

I = K·C, где K - константа пропорциональности, называемая *константой Ильковича*. На этом уравнении основан *количественный анализ*.

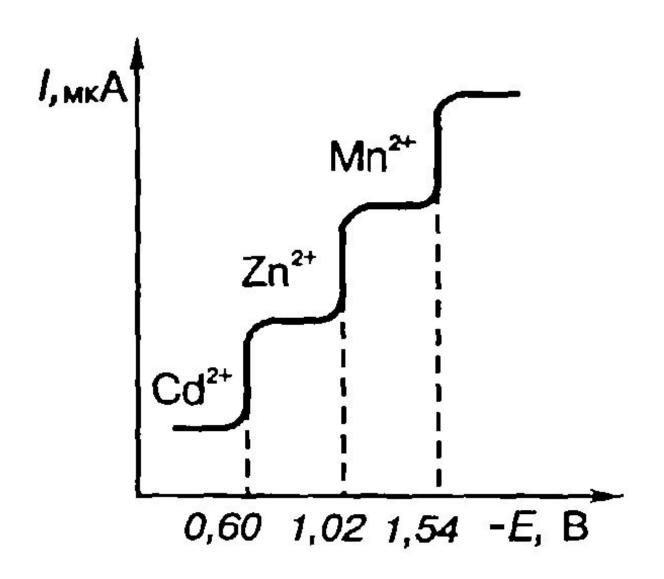
Методы определения концентрации в полярографии

- Метод градуировочного графика: измеряется сила диффузионного тока (I) серии стандартных растворов с известной концентрацией определяемого вещества. Затем строится градуировочный график в координатах I С, по которому и определяется концентрация неизвестного раствора.
- **Метод стандартных растворов**. Высота волны для неизвестного раствора сравнивается с высотой волны стандартного раствора, концентрация которого известна. Расчет неизвестной концентрации (C_x) проводят по формуле:

 $C_x = C_{ct} * h_x / h_{ct}$


• 3. **Метод добавок:** измеряется сила диффузионного тока (I) раствора с неизвестной концентрацией и с добавкой известного количества определяемого вещества.

$$I_{x+\partial o \delta} - I_x$$


Возможности и применение полярографии

- Определение как качественное, так и количественное любых электрохимически активных веществ с нижним пределом обнаружения **10**⁻⁵ моль/л и погрешностью около **2-5**%.
- Одновременное определение нескольких компонентов в одном растворе при условии, что их потенциалы полуволн (**E**_{1/2}) различаются более чем на **0,2** В.
- Возможность определения органических веществ, содержащих следующие функциональные группы: >C=O, >C=C-C=C<, >C=N-, -N=N-, -O-O-,-S-S-, >C=S, -N=O, -NO₂, >C=C-C=O и другие, способные к электровосстановлению или электроокислению

Полярограмма смеси ионов

Полярограмма смеси ионов

Развитие полярографического

Виды полярографии

- Метода итические характеристики Разрешающая способность С
- Дифференциальная полярография
- **0,1 В 10**⁻⁵ моль/л
- Вольтамперометрия с линейной разверткой потенциала
- 0,1 B 10⁻⁶

• Переменнотоковая полярография

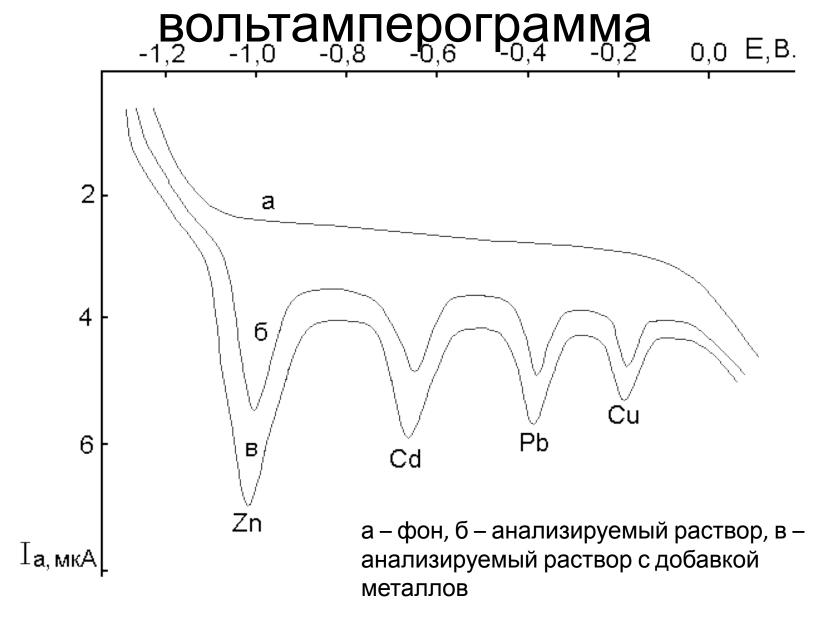
- 0,04 B 5·10⁻⁸
- Инверсионная вольтамперометрия
- 0,1 B 10⁻⁹-10⁻¹¹
- Амперометрическое титрование
- - -

Дифференциальная полярография

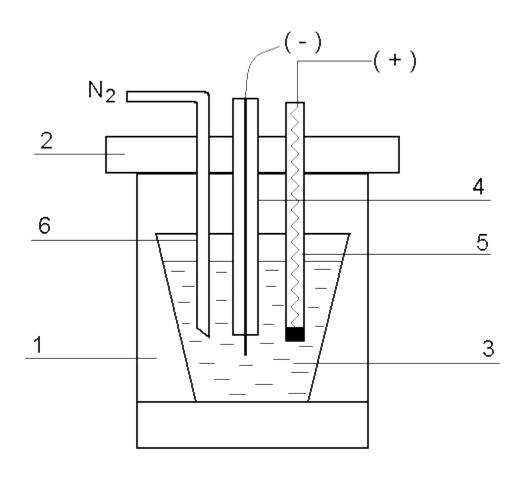
Основана на электронном дифференцировании I-Е кривых и получении кривой в форме первой производной, на которой максимум соответствует а высота пика пропорциональна концентрации. При одинаковой с классической полярографией минимально определяемой концентрацией метод характеризуется повышенной разрешающей способностью разность Е_{1/2} для раздельной регистрации пиков достаточна 0.1 В.

Вольтамперометрия с линейной разверткой потенциала

В этом методе увеличение потенциала рабочего электрода происходит с гораздо большей скоростью, чем в классической полярографии (1-10 В/с вместо 1-10 мВ/с), в связи с чем для регистрации быстро меняющегося тока используют практически безинерционный прибор осциллограф. Вид получающихся при этом полярограмм отличается от классических наличием максимума тока, величина которого примерно в 10 раз превышает величину диффузионного тока за счет большего потока вещества к электроду при сокращении времени регистрации кривой. Пропорциональность тока пика концентрации вещества при этом сохраняется, что позволяет определять вещества с концентрацией до 10^{-6} моль/л при разрешающей способности как в дифференциальном методе - 0,1 В.


Переменнотоковая полярография

В этом методе на ячейку кроме линейно возрастающего напряжения подают переменное напряжение синусоидальной или прямоугольной формы амплитудой 10-50 мВ, что приводит к протеканию через раствор наряду с постоянным током переменного тока. Для регистрации полезного сигнала используют только переменный ток, что позволяет за счет уменьшения емкостной составляющей повысить чувствительность определений до 5*10-8 моль/л, а разрешающая способность при этом возрастает до 0,04 В, так как полярограмма в этом методе имеет вид узких пиков. Потенциал пика практически совпадает с $E_{1/2}$, а высота пика также пропорциональна концентрации


Инверсионная вольтамперометрия

Сущность этого метода заключается в электрохимическом концентрировании определяемого вещества на поверхности стационарного электрода с последующим растворением его и регистрации тока растворения. Концентрирование (накопление на электроде) проводят при потенциале электрода, соответствующем потенциалу предельного тока, при непрерывном перемешивании раствора для увеличения скорости подвода вещества к электроду (или используют вращающийся электрод) в течение определенного времени (1-30 мин). Затем прекращают перемешивание и уменьшают потенциал электрода, регистрируя анодную вольтамперограмму в виде пика растворения. Так как время растворения значительно меньше времени накопления, ток растворения гораздо больше тока накопления, что позволяет проводить определение обратимо восстанавливающихся металлов с концентрацией до 10^{-9} , а в отдельных случаях до 10^{-11} моль/л.

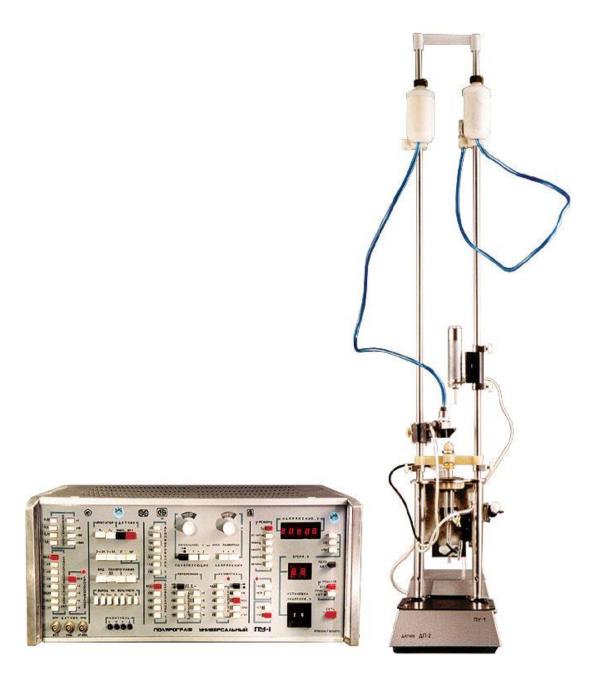
Инверсионная

Ячейка для инверсионной вольтамперометрии

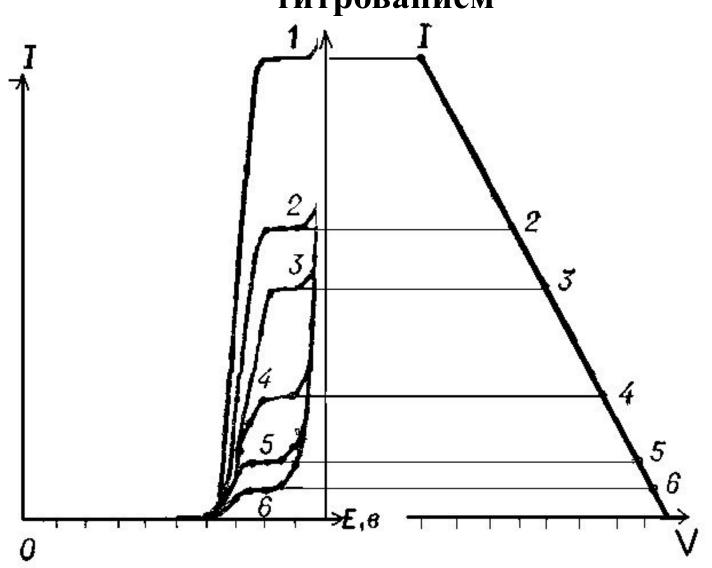
Анализатор тяжёлых металлов АКВ-07МК

Датчик АКВ-07МК

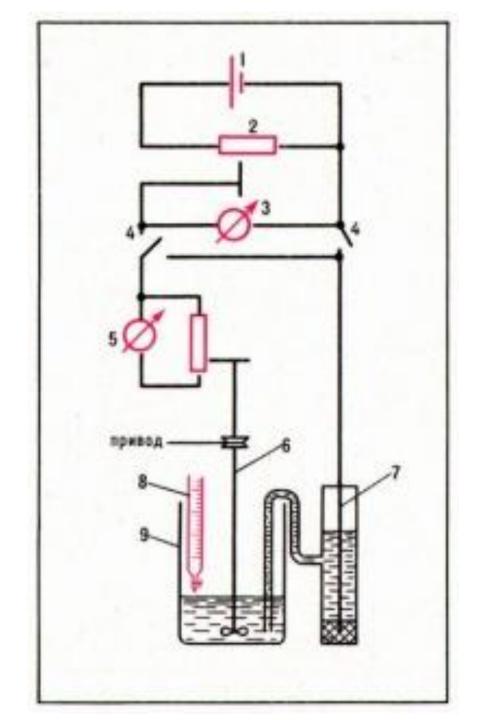
Полярограф «Экотест-ВА»


Комплект для полевых измерений тяжелых металлов с микроэлектродом

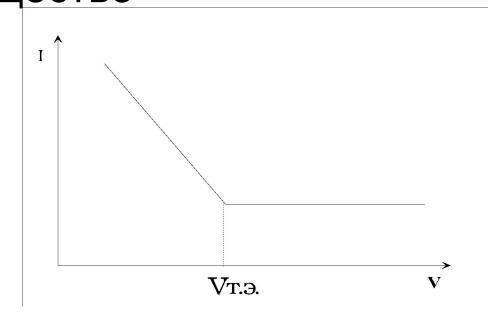
Комплекс "Экотест-ВА"


Универсальный полярограф ПУ-

Амперометрическое титрование

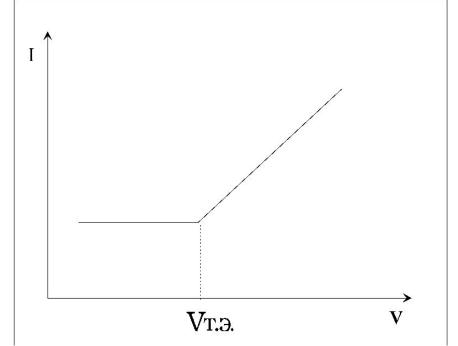

• Этот метод использует *изменение* величины предельного диффузионного *тока* в процессе титрования для определения *точки эквивалентности*

Связь полярографии с амперометрическим титрованием

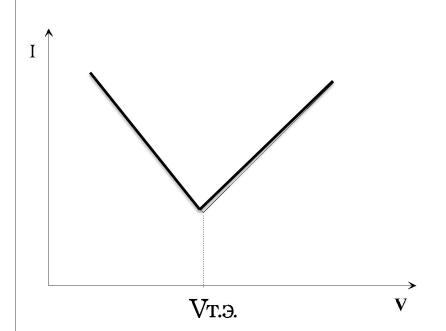


Принципиальная схема установки для амперометрического титрования:

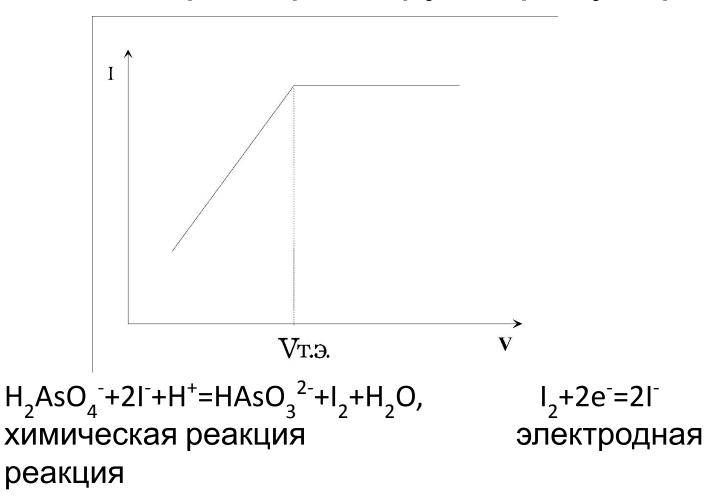
- 1- источник тока;
- 2-реостат;
- 3- вольтметр;
- 4- контакты;
- 5- гальванометр с шунтом;
- 6- вращающийся индикаторный электрод;
- 7- электрод сравнения;
- 8- бюретка;
- 9- сосуд для титрования



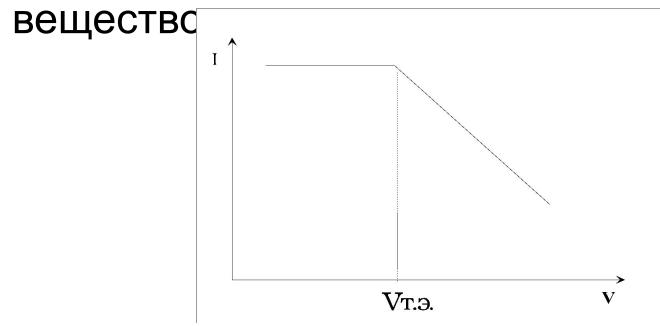
• На электроде реагирует определяемое вещество


Pb ²⁺+2e⁻ = Pb^o электродная

• На электроде реагирует титрант

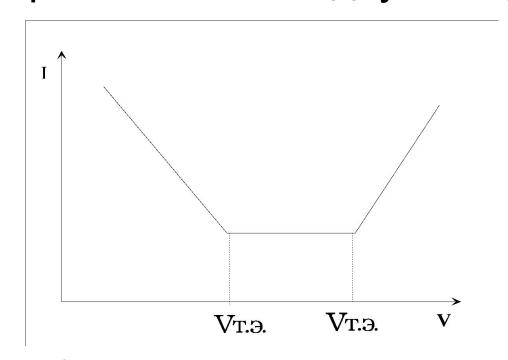

 $3Zn^{2+}+2K_4[Fe(CN)_6]=K_2Zn_3[Fe(CN)_6]_{2^-}+6K_7^+$ химическая реакция, $K_4[Fe(CN)_6]-e^-=K_3[Fe(CN)_6]+K_7^+$ электродная реакция

• На электроде реагирует определяемое вещество и титрант



 $2 \text{ Pb}^{2+}+\text{Cr}_2\text{O}_7^{2-}+\text{H}_2\text{O}=2\text{PbCrO}_4^-+2\text{H}^+$ химическая реакция, $\text{Pb}^{2+}+2\text{e}^-=\text{Pb}^{\text{o}}, \text{Cr}_2\text{O}_7^{2-}+14\text{H}^++6\text{e}^-=2\text{Cr}^{3+}+7\text{H}_2\text{O}$ электродные реакции

• На электроде реагирует продукт реакции



• На электроде реагирует индикаторное

$$AI^{3+}+6F^{-}=[AIF_{6}]^{3-}$$
, $Fe^{3+}+6F^{-}=[FeF_{6}]^{3-}$, химические реакции реакция

• Титрование смеси двух веществ

$$2Pb^{2+}+Cr_2O_7^{2-}+H_2O=2PbCrO_4+2H^+$$
 химические реакции $2Ba^{2+}+Cr_2O_7^{2-}+H_2O=2BaCrO_4+2H^+$ $Pb^{2+}+2e^-=Pb^o$, $Cr_2O_7^{2-}+14H^++6e^-=2Cr^{3+}+7H_2O$ электродные реакции

Преимущества амперометрического титрования

- простота аппаратуры
- выбор потенциала наложения для повышения избирательности метода
- возможность использования реакций любого типа
- возможность анализа электрохимически неактивных веществ
- возможность применения не только РКЭ, но и твердых электродов

Кулонометрия

• Определение: кулонометрия электрохимический метод анализа, основанный на измерении количества электричества, необходимого для количественного электрохимического превращения определяемого вещества

Майкл Фарадей. (1791–1867)

Открыл законы электролиза (1833), названные его именем

Основное уравнение метода

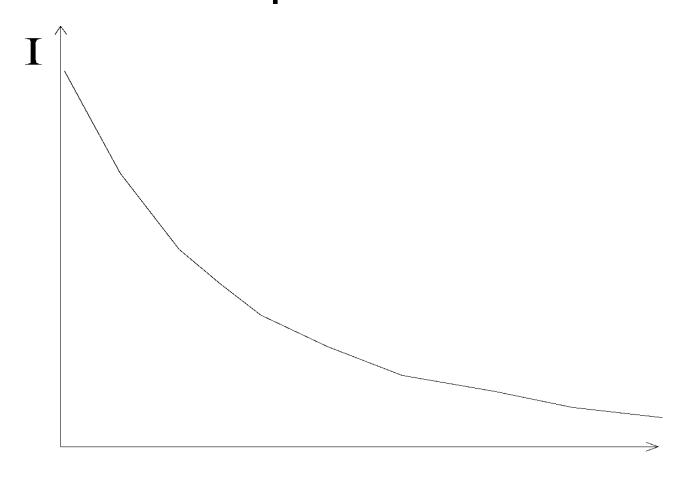
$$\mathbf{m} = \frac{\mathbf{Q} \cdot \mathbf{M}}{\mathbf{n} \cdot \mathbf{F}} = \frac{\mathbf{I} \cdot \mathbf{t} \cdot \mathbf{M}}{\mathbf{n} \cdot \mathbf{F}}$$

где m - масса вещества, г;

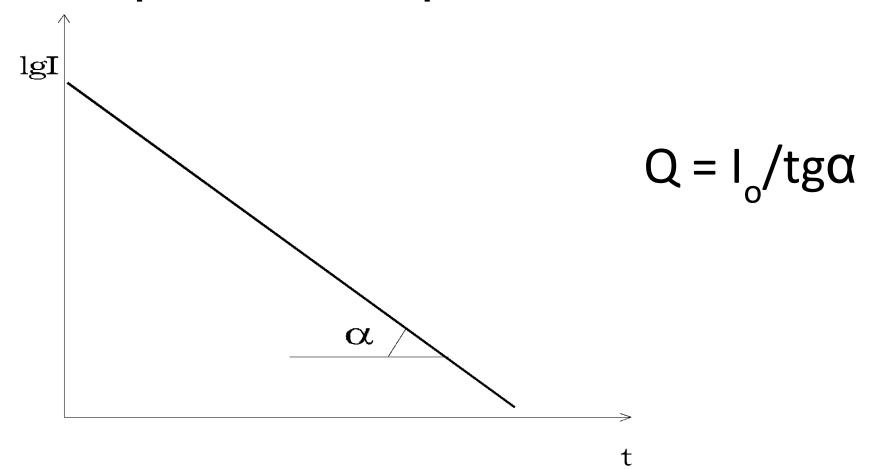
- Q количество электричества, Кл;
- М молярная масса вещества, г/моль;
- n число электронов, участвующих в электрохимической реакции, в расчете на одну молекулу вещества;
- F константа Фарадея, 96485 Кл/моль;
- I сила тока, А;
- t время электролиза, с.

Виды кулонометрии

- При контролируемом постоянном потенциале *потенциостатическая кулонометрия*.
- При постоянном токе амперостатическая кулонометрия.
- Кулонометрическое титрование

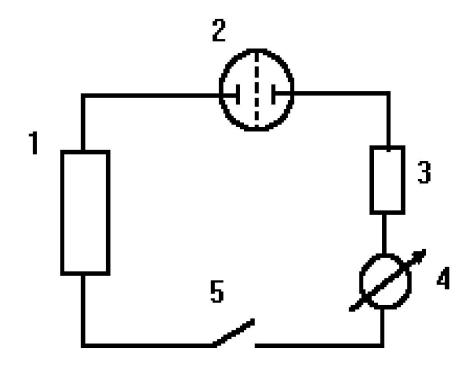

Потенциостатическая кулонометрия

Зависимость силы тока от времени определяется уравнением:


$$I = I_o \cdot 10^{-kt},$$

где I - ток в момент времени t, I_o - начальный ток, t - время, k - константа, зависящая от площади электрода, числа электронов, коэффициента диффузии и других факторов

Зависимость силы тока от времени



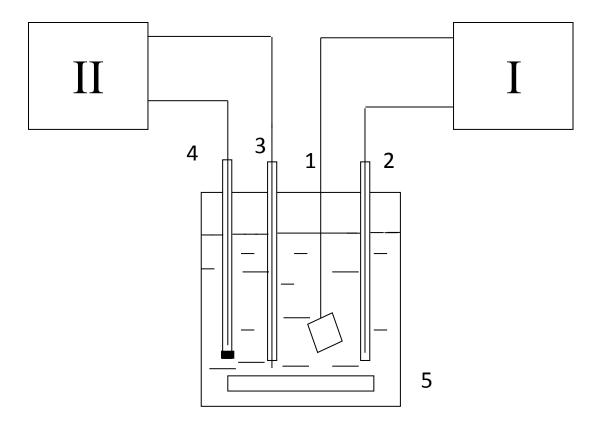
Сокращение времени анализа

Амперостатическая кулонометрия

Схема установки для амперостатической кулонометрии

1 – источник постоянного напряжения (100-200 В)

2 – электрохимическая ячейка


3 – постоянное сопротивление (10-25 кОм)

4 – амперметр

5 - тумблер

Кулонометрическое

ТИТРОВАНИЕ Титрант, используемый в кулонометрическом титровании, получается на электроде из вспомогательного вещества при прохождении через раствор электрического тока. Такой способ называется **электрогенерированием** титранта, а рабочий электрод в этом случае называют *генераторным* электродом. Образовавшись на электроде, титрант вступает в реакцию с определяемым веществом. Точку эквивалентности определяют с помощью химических индикаторов или одним из инструментальных методов анализа количество электричества рассчитывают по простой формуле: Q = It.

Принципиальная схема установки для кулонометрического титрования с электрохимической индикацией к.т.т.:

1 - рабочий (генераторный) электрод; 2 — вспомогательный электрод; 3 — индикаторный электрод; 4 — электрод сравнения; 5 — мешалка; I - контур генераторной системы; II - контур индикаторной системы.

Примеры кулонометрического титрования

Определение тиосульфата натрия электрогенерированным йодом, когда на электроде (аноде) протекает электрохимическая реакция: **2I**⁻ - **2e**⁻ = **I**₂, а в растворе химическая:

 $I_2 + 2Na_2S_2O_3 = Na_2S_4O_6 + 2NaI$ Точку эквивалентности легко определить по появлению синей окраски, образованной избытком иода с крахмалом.

Примеры кулонометрического титрования

Определение кислот титрованием электрогенерированными ионами ОН⁻

на катоде: $2H_3O^+ + 2e^- = H_2\uparrow + 2H_2O;$ $2H_2O + 2e^- = H_2\uparrow + 2OH^-,$

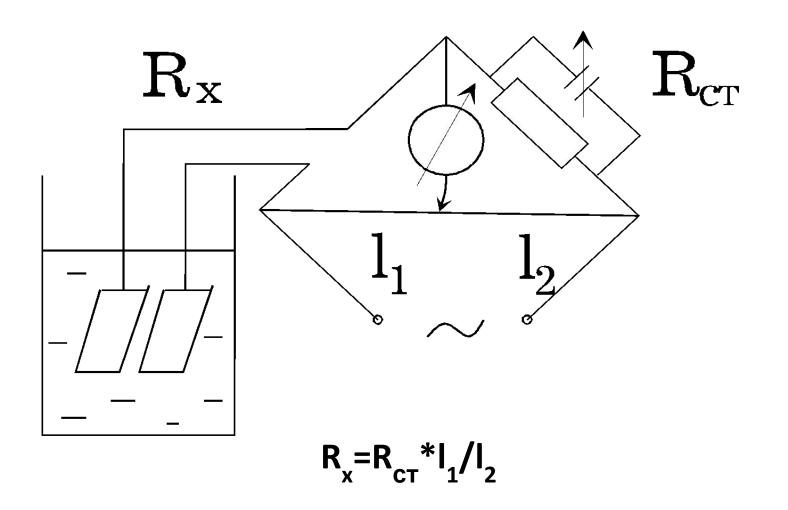
в растворе: $OH^- + H_3O^+ = 2H_2O$

После завершения химической реакции избыток ионов ОН создаст в растворе щелочную среду, что можно обнаружить с помощью кислотно-основного индикатора (фенолфталеина) или потенциометрически со стеклянным индикаторным электродом.

Преимущества кулонометрического

- Высокая точность (до 0,01%), обусловленная высокой точностью измерения тока и времени
- Высокая чувствительность минимально определяемые концентрации до 10⁻⁶ моль/л
- Возможность использования малоустойчивых титрантов, не применяемых в обычном титровании из-за нестабильности стандартных растворов, таких как Ag(II), Cr(II), Cu(I), Sn(II), Fe(II)
- Возможность автоматизации анализа
- Не требуется стандартных веществ и стандартизации титранта, так как стандартом является физическая константа F константа Фарадея
- Возможность использования любых типов химических реакций

Кулонометр «Эксперт-006»


Кондуктометрия

• Определение: Кондуктометрический метод анализа основан на измерении электрической проводимости растворов, зависящей от концентрации электролита

Основные уравнения

- Электрическая **МЕТДИЯ**сть L, См (Сименс): L=1/R, где R -сопротивление раствора, Ом.
- Сопротивление раствора R= r*I/S, где I расстояние между электродами, S площадь электродов, r удельное сопротивление.
- Удельная электрическая проводимость æ=1/r
- Эквивалентная электрическая проводимость I= æ*1000/C, где С концентрация, моль/л.
- Подвижность ионов U- скорость их движения (v) при напряженности электрического поля 1 В/см, умноженная на константу Фарадея F: U=v*F.
- Проводимость раствора L=k*(S/I)*C*U, при S и I постоянных, что справедливо для

Схема установки для измерения электропроводности

Подвижности некоторых ионов в воде при 25° C, См·см²

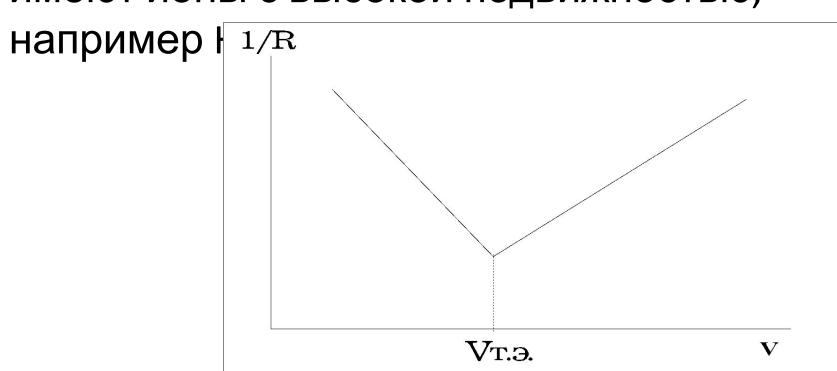
Ион	Подвижность	Ион	Подвижность
H+ (H ₃ O)+ K+	349,82	OH-	198,0
K+ Ba2+	73,52 63,64	SO ₄ ² -	79,8
Na+ Li+	50,11 38,69	C1-	76,34
	00,00	NO3	71,44

растворах при наложении поля положительный заряд переходит от иона гидроксония вместе с атомом водорода к ближайшей молекуле воды, которая становится ионом H₃O⁺. Этот ион, в свою очередь, передает заряд соседней молекуле воды и т.д. Таким образом, за короткое время положительный заряд переносится на значительное расстояние. Описанный механизм может (Направление поля Благодаря такому эстафетному механизму переноса протонов ионы гидроксония в действительности не двигаются через перенос тока осуществляется путем

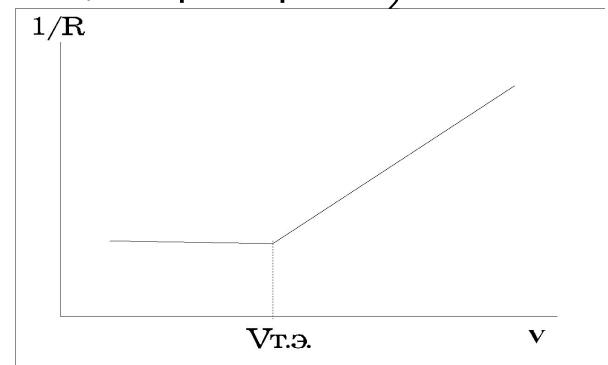
перераспределения электронов в молекулах воды.

Подвижности ионов водорода и гидроксила в водных

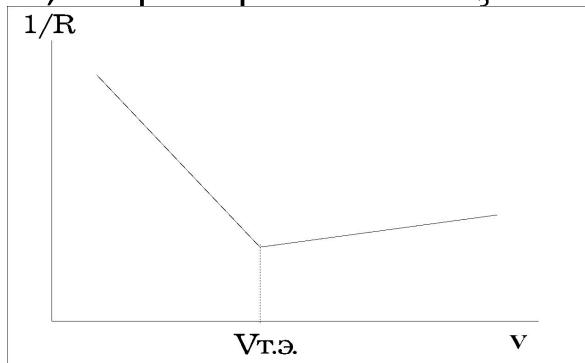
растворах аномально велики по сравнению с подвижностями


других ионов. Это обусловлено особым механизмом переноса

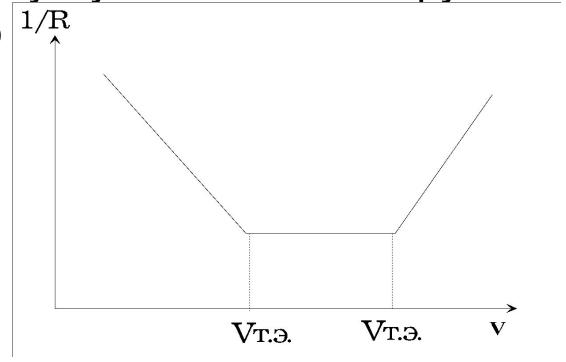
электрического заряда ионами Н⁺(Н₃О⁺) и ОН⁻. Так, в кислых


Методы определения концентрации веществ

- Прямая кондуктометрия. По градуировочному графику в координатах L C. Метод прямой кондуктометрии не селективен, любые посторонние электролиты будут мешать определению. При проведении измерения необходимо термостатирование раствора. Применяется для оценки общего содержания электролитов в растворе и анализе растворов индивидуальных веществ
- Кондуктометрическое титрование. Основано на определении точки эквивалентности по изменению электрической проводимости раствора в процессе титрования, что связано с различной подвижностью ионов.


• Определяемое вещество и титрант имеют ионы с высокой подвижностью,

• Определяемое вещество имеют ионы с низкой подвижностью, а титрант с высокой, например CaCl₂+NaOH



• Определяемое вещество имеет ионы с высокой подвижностью, а титрант с низкой, например HCl+NaHCO₂

• Титруется смесь веществ с разной степенью диссоциации, например смесь соляной и уксусной кислот титруют

щелочью

Возможности и преимущества метода кондуктометрического титрования

- Возможность титрования окрашенных и мутных растворов.
- Возможность анализа смеси веществ.
- Возможность использования всех типов химических реакций кислотно-основных, осаждения, комплексообразования, окислительно-восстановительных.
- Возможность автоматизации анализа.
- Возможность анализа разбавленных растворов с концентрацией до 10⁻⁴ М.

Кондуктометр "Эксперт - 002" с датчиком наливного типа

