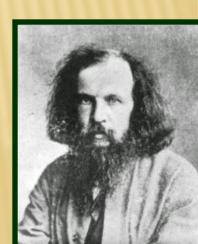
ЭЛЕМЕНТЫ IV ГРУППЫ ГЛАВНОЙ ПОДГРУППЫ ПЕРИОДИЧЕСКОЙ СИСТЕМЫ ЭЛЕМЕНТОВ ТАБЛИЦЫ МЕНДЕЛЕЕВА

Выполнила студентка группы х-116 Осипова Вера


Руководитель: к.х.н., доц. НХ и XT Перегудов Ю.С.

Кафедра неорганической химии и химической технологии

Подгруппа углерода, в которую входят углерод, кремний, германий, олово и свинец, является главной подгруппой 4 группы Периодической системы.

Дмитрий Иванович

Начиная с кремния, р-элементы IV группы имеют вакантные d-орбитали. Это определяет возможность образования связей по донорно-акцепторному механизму и приводит к увеличению валентности в координационных соединениях до VI. Ввиду отсутствия d-подуровня у атома углерода его валентность в соединениях не может быть более IV, и углерод, в отличие от Si, Ge, Sn и Pb, не способен образовывать комплексные соединения.

C $2s^22p^2$ Si $3s^23p^23d^0$ Ge $3d^{10}4s^24p^24d^0$ Sn $4d^{10}5s^25p^25d^0$ Pb $4f^{14}5d^{10}6s^26p^26d^0$

Углерод и кремний являются типичными неметаллами, а олово и свинец – типичными металлами. Германий занимает промежуточное положение.

СТЕПЕНЬ ОКИСЛЕНИЯ

все элементы имеют характерные -4, +2, +4. Как и у степени окисления всех элементов главных подгрупп периодической системы, при движении сверху вниз устойчивость соединений «крайних» степеней окисления (-4 и +4) уменьшается, а степени окисления +2 увеличивается.

ОБЩАЯ ХАРАКТЕРИСТИКА ПОДГРУППЫ

- Атомный радиус сверху вниз возрастает
- Температура плавления и кипения убывает
- Энергия ионизации убывает
- Металлические свойства увеличиваются
- Основные свойства увеличиваются

УГЛЕРОД

ФИЗИЧЕСКИЕ СВОЙСТВА

Символ элемента	C
Название элемента	Углерод
Дата открытия	-
Плотность, кг/м ³	3513,00
Температура плавления, Т.К	3820,00
Температура кипения, Т.К.	5100,00

~-	
Onmure	свойства
Courter	chough the

Свойства атома

Заряд ядра	6
Атомная масса	12.01100
Потенциал ионизации , кДж/моль	1086,20
Сродство к электрону , кДж/моль	121,90
Электроотри- цательность по Полингу	2,55

Углерод существует во множестве аллотропных модификаций с очень разнообразными физическими свойствами. Разнообразие модификаций обусловлено способностью углерода образовывать химические связи разного типа.

ФИЗИЧЕСКИЕ СВОЙСТВА

Известны четыре кристаллические модификации углерода: **графит, алмаз, карбин и лонсдейлит.**

- Графит серо-чёрная, непрозрачная, жирная на ощупь, чешуйчатая, очень мягкая масса с металлическим блеском, обладает электропроводимостью. Сгорает при 700С в присутствии кислорода. Встречается в природе; получается искусственно. При высокой температуре, давлении и присутствии катализатора (марганец Мn, хром Сr, платиновые металлы) графит превращается в алмаз.
- Алмаз минерал, имеющий желтоватый, белый, серый, зеленоватый, реже голубой и черный цвет. Не проводит электрический ток, плохо проводит тепло.. Алмаз это самое твердое вещество из всех известных. Температура плавления выше 3500 С. Химически стоек. Сгорает при 870С в присутствии кислорода. При 1800С в отсутствие кислорода превращается в графит. Прозрачные кристаллы; после обработки бриллианты. Добывают из россыпей и коренных месторождений.
- Карбин получен искусственно. Он представляет собой мелкокристаллический порошок чёрного цвета (плотность = 2 г/см). Построен из длинных цепочек атомов С, уложенных параллельно друг другу.
- Лонсдейлит найден в метеоритах и получен искусственно; его структура и свойства окончательно не установлены

ХИМИЧЕСКИЕ СВОЙСТВА Химические свойства углерода обычно рассматриваются на примере

графита или углей, поскольку алмаз химически неактивен. Углерод

малоактивное вещество и в реакции вступает при нагревании ИПИ

поджигании, что связано с затратами энергии для разрушения

кристаллическо

С

Свойства атома

ХИМИЧЕСКИЕ СВОЙСТВА

1. Взаимодействие с водородом происходит при высокой температур наличии катализатора. Ni

$$C + 2H_2 = CH_4$$

2. Взаимодействие с кислородом. При сгорании углей образуется диоксид углерода (CO₂)..

$$C + O_2 = CO_2$$

3. Углерод непосредственно взаимодействует только с фтором. Соединения с хлором, бромом, йодом получают косвенным путем.

$$C + 2F_2 = CF_4$$

4. Углерод при нагревании соединяется с серой и азотом.

$$C + 2S = CS_2$$
 (сероуглерод) $2C + N_2 = (CN)_2$ - дициан

Сероуглерод является хорошим растворителем жиров, смол, лаков.

5. При высокой температуре углерод образует с металлами или их оксидами карбиды.

$$2C + Ca = CaC_2$$
 $2Na + 2C = Na_2C_2$ $4AI + 3C = AI_4C_3$
 $C + 3Fe = Fe_3C$ $CaO + 3C = CaC_2 + CO_2$ $AI_2O_3 + 9C = AI_4C_3 + 6CO$

ХИМИЧЕСКИЕ СВОЙСТВА

- **6**. При нагревании углерод окисляется азотной и конц. серной кислотами, хотя на холоду устойчив к действию этих и других кислот. $C + 2H_2SO_4$ (конц.) = $CO_2 + 2SO_2 + 2H_2O_3$ (разб.) = $3CO_2 + 4NO + 2H_2O_3$
- **7.** Уголь при нагревании проявляет сильные восстановительные свойства, что используется в металлургии. Восстановителем является как
- сам углерод, так и,образующийся при сгорании угля,монооксид углерода.

$$Fe_3O_4 + 2C = 3Fe + 2CO_2$$

 $2ZnO + C = 2Zn + CO_2$
 $MnO_2 + C = Mn + CO_2$
 $BaSO_4 + 2C = BaS + 2CO_2$
 $SiO_2 + C = Si + CO_2$
 $Ca_3(PO_4)_2 + 10C + 6SiO_2 = P_4 + 6CaSiO_3 + 10CO$

8. При высокой температуре (1000° C) уголь разлагает воду: $C + H_2O = CO + H_2$

УГЛЕРОД В ОРГАНИЗМЕ

Углерод - важнейший биогенный элемент, составляющий основу жизни на Земле, структурная единица огромного числа органических соединений, участвующих в построении организмов и обеспечении их жизнедеятельности (биополимеры, а также многочисленные низкомолекулярные биологически активные вещества - витамины, гормоны, медиаторы и др.). Значительная часть необходимой организмам энергии образуется в клетках за счёт окисления углерода. Возникновение жизни на Земле рассматривается в современной науке как сложный процесс эволюции углеродистых соединений.

НАХОЖДЕНИЕ В ПРИРОДЕ

В природе углерод встречается в виде:

- алмаза
- карбина
- графита
- в соединениях в виде каменного и бурого углей и нефти.
- Входит в состав природных карбонатов: известняка, мрамора, мела СаСО₃, доломита СаСО₃ *MgCO₃. Является важной составной частью органических веществ.

ПРИМЕНЕНИЕ

- **Графит** используется в карандашной промышленности. Также его используют в качестве смазки при особо высоких или низких температурах.
- Алмаз. Алмазным напылением обладают шлифовальные насадки бормашин. Кроме этого, ограненные алмазы — <u>бриллианты</u> используются в качестве драгоценных камней в ювелирных украшениях. Благодаря редкости, высоким декоративным качествам и стечению исторических обстоятельств, бриллиант неизменно является самым дорогим драгоценным камнем. Исключительно высокая теплопроводность алмаза (до 2000 Вт/м·К) делает его перспективным материалом для полупроводниковой техники в качестве подложек для процессоров. Но относительно высокая цена (около 50 долларов/грамм) и сложность обработки алмаза ограничивают его применение в этой области.
- В фармакологии и медицине широко используются различные соединения углерода производные угольной кислоты и карбоновых кислот, различные гетероциклы, полимеры и другие соединения. Так, карболен(активированный уголь), применяется для абсорбции и выведения из организма различных токсинов; графит (в виде мазей) для лечения кожных заболеваний; радиоактивные изотопы углерода для научных исследований (радиоуглеродный анализ).

КРЕМНИЙ

ПОЛУЧЕНИЕ

Основным способом получения кремния является восстановление из диоксида кремния, а наиболее чистый кремний восстановлением SiCl4.

$$-$$
 SiO₂ + 2C = Si + 2CO

-
$$3SiO_2 + 4AI = 3Si + 2AI_2O_3$$

- $SiO_2 + 2Mg = Si + 2MgO$

SiO₂ + 2Mg = Si + 2Mg
$$\bar{O}$$

ФИЗИЧЕСКИЕ СВОЙСТВА

Кремний - широко распространённый элемент в природе. В земной коре его 27.6%. Технология получения его отличается от технологии получения германия. Исходное сырьё в виде двуокиси кремния широко распространено в природе. Из кремнезёма в дуговых электрических печах путём восстановления его углеродом кокса получают кремний чистотой до 97%. Кристаллический кремний - темно-серое вещество с металлическим блеском.

Символ элемента	Si
Название элемента	Кремний
Дата открытия	1824
Плотность, кг/м ³	2329,00
Температура плавления, Т.К.	1683,00
Температура кипения, Т.К	2628,00

Заряд ядра	14
Атомная масса	28.08550
Потенциал ионизации , кДж/моль	786,50
Сродство к электрону , кДж/моль	133,60
Электроотри- цательность по Полингу	1,90

ХИМИЧЕСКИЕ СВОЙСТВА

Свойства атома

Кремний довольно инертное вещество и его химическая активность проявляется преимущественно при высоких температурах.

1.Кремний взаимодействует с кислородом при 400-500 C, а с водородом - при 3000 °C

$$Si + O_2 = SiO_2$$

 $Si + 2H_2 = SiH_4$ (силан)

2. Кремний взаимодействует с фтором при обычной температуре, а с остальными

галогенами при нагревании.

$$Si + 2F_2 = SiF_4$$
 $Si + 2Cl_2 = SiCl_4$ $Si + 2Br_2 = SiBr_4$

Галогениды кремния гидролизуются водой с образованием кремневой кислоты или диоксида кремния (если гидролиз идет при нагревании).

$$SiCl_4 + 3H_2O = H_2SiO_3 + 4HCI$$
 $SiCl_4 + 2H_2O = 4HCI + SiO_2$

3. Взаимодействие с другими неметаллами также идет при нагревании:

$$Si + 2S = SiS_2$$
 $3Si + 2N_2 = Si_3N_4$ $Si + C = SiC$

ХИМИЧЕСКИЕ СВОЙСТВА

4. При нагревании кремния с металлами образуются силициды. Силициды разлагаются водой и кислотами с образованием силана (основной способ получения силана). Силан горит и разлагается щелочью.

$$2Ca + Si = Ca_2Si$$

 $2Mg + Si = Mg_2Si$
 $Ca_2Si + 4HCI = 2CaCl_2 + SiH_4$
 $Ca_2Si + 4H_2O = 2Ca(OH)_2 + SiH_4$
 $SiH_4 + 2O_2 = SiO_2 + 2H_2O$
 $SiH_4 + 2NaOH + H_2O = Na_2SiO_3 + 4H_2$

5. Кислоты, кроме плавиковой, на кремний не действуют, в щелочах кремний растворяется с выделением водорода.

6. При нагревании кремний разлагает воду. $Si + 2H_2O = SiO_2 + 2H_2$

Общие свойства

Свойства атома

НАХОЖДЕНИЕ В ПРИРОДЕ

- Кремний после кислорода самый распространенный элемент в земной коре. В отличие от углерода в свободном состоянии кремний в природе не встречается. Наиболее распространенными его соединениями являются оксид кремния (IV) SiO₂ и соли кремниевых кислот силикаты. Они образуют оболочку земной коры. Соединения кремния содержатся в организмах растений и животных.
- состав некоторых природных силикатов: полевой шпат $K_2O \times Al_2O_3 \times 6SiO_2$, асбест $3MgO \times 2SiO_2 \times 2H_2O$, слюда $K_2O \times 3Al_2O_3 \times 6SiO_2 \times 2H_2O$, каолинит $3Al_2O_3 \times 2SiO_2 \times 2H_2O$.
- Силикаты, содержащие в своем составе также оксид алюминия, называются алюмосиликатами- полевой шпат, каолинит и слюда.
 Граниты и гнейсы — состоят из кристалликов кварца, полевого шпата и слюды.

ПРИМЕНЕНИЕ

Технический кремний находит следующие применения:

- сырьё для металлургических производств: компонент сплава (бронзы, силумин); раскислитель (при выплавке чугуна); модификатор свойств металлов или легирующий элемент (например, добавка определённого количества кремния при производстве трансформаторных сталей, сырьё для производства более чистого поликристаллического кремния и очищенного металлургического кремния (в литературе «umg-Si»);
- сырьё для производства кремнийорганических материалов, силанов;
- иногда кремний технической чистоты и его сплав с жологом (ферросилиций) используется для производства во полевых условиях;
- для производства солнечных батарей.

ГЕРМАНИЙ, ОЛОВО, СВИНЕЦ

ГЕРМАНИЙ

Твёрдое вещество серо-белого цвета с металлическим блеском. Природный Германий представляет собой смесь пяти стабильных изотопов с массовыми числами 70, 72, 73, 74 и 76.

Германий кристаллизуется в кубической структуре типа алмаза, параметр элементарной ячейки а = 5, 6575Å. Даже весьма чистый Германий хрупок при обычной температуре, но выше 550°С поддается пластической деформации. Германий - типичный полупроводник с шириной запрещенной зоны 1,104·10⁻¹⁹дж или 0,69 эв (25°С); Прозрачен для инфракрасных лучей с длиной волны больше 2 мкм.

Символ элемента	Ge
Название элемента	Германий
Дата открытия	1886
Плотность, кг/м ³	5323,00
Температура плавления, Т.К.	1210,60
Температура кипения, Т.К	3103,00

Заряд ядра	32
Атомная масса	72.61
Потенциал ионизации , кДж/моль	762,10
Сродство к электрону , кДж/моль	116,00
Электроотри- цательность по Полингу	2,01

ОЛОВО

Олово при нормальных условиях — мягкий, ковкий, пластичный металл серебристо-белого цвета. Обладая высокой мягкостью и тягучестью, олово может быть прокатано в тонкие листы, которые называют оловянной фольгой или станиолем.

Символ элемента	Sn
Название элемента	Олово
Дата открытия	
Плотность, кг/м ³	5750,00
Температура плавления, Т.К	505,12
Температура кипения, Т.К	2543,00

Общие свойства

Sn

олово

Свойства атома

Заряд ядра	50
Атомная масса	118.69000
Потенциал ионизации , кДж/моль	708,60
Сродство к электрону , кДж/моль	116,00
Электроотри- цательность по Полингу	1,96

СВИНЕЦ

Металл мягкий, легко режется ножом. На поверхности он обычно покрыт более или менее толстой плёнкой оксидов, при разрезании открывается блестящая поверхность, которая на воздухе со временем тускнеет.

Символ элемента	РЬ
Название элемента	Свинец
Дата открытия	-
Плотность, кг/м ³	11350,00
Температура плавления, Т.К.	600,65
Температура кипения, Т.К	2013,00

Заряд ядра	82
Атомная масса	207.20000
Потенциал ионизации , кДж/моль	715,50
Сродство к электрону , кДж/моль	35,10
Электроотри- цательность	2,33

ПОЛУЧЕНИЕ

- □ <u>ГЕРМАНИЙ</u> встречается в виде примеси к полиметаллическим, никелевым, вольфрамовым рудам, а также в силикатах. В результате сложных и трудоёмких операций по обогащению руды и её концентрированию германий выделяют в виде оксида GeO₂, который восстанавливают водородом при 600 °C до простого вещества: GeO₂ + 2H₂ = Ge + 2H₂O.Очистка и выращивание монокристалов германия производится методом зонной плавки(метод очистки твёрдых веществ, основанный на различной растворимости примесей в твердой и жидкой фазах).
- СВИНЕЦ. Основной источник сульфидные полиметаллические руды, содержащие от 1 до 5% свинца. Руду концентрируют до содержания свинца 40 75%, затем подвергают обжигу: 2PbS + 30₂ = 2PbO + 2SO₂ и восстанавливают свинец коксом и оксидом углерода(II)
- ОЛОВО. Промышленное получение целесообразно, если содержание его в россыпях 0,01%, в рудах 0,1%; обычно же десятые и единицы процентов. Олову в рудах часто сопутствуют W, Zr, Cs, Rb, редкоземельные элементы, Та, Nb и другие ценные металлы. Первичное сырье обогащают: россыпи преимущественно гравитацией, руды также флотогравитацией или флотацией.

НАХОЖДЕНИЕ В ПРИРОДЕ

- СВИНЕЦ. Содержание в земной коре $1,6\cdot10^{-3}\%$ по массе. Самородный свинец встречается редко. В природе известно 180 минералов свинца. Основные галенит PbS и продукты его химических превращений англезит PbSO₄ и церуссит PbCO₃. Реже встречаются пироморфит PbCl₂·3Pb₃₂, миметит PbCl₂·3Pb₃₂, крокоит PbCrO₄, вульфенит PbMoO₄, штольцит PbWO₄. В свинцовых рудах часто находятся также другие металлы медь, цинк, кадмий, серебро, золото, висмут и др.
- □ ОЛОВО редкий рассеянный элемент, по распространенности в земной коре олово занимает 47-е место. Кларковое содержание олова в земной коре составляет, по разным данным, от $2\cdot10^{-4}$ до $8\cdot10^{-3}$ % по массе. Основной минерал олова касситерит (оловянный камень) SnO_2 , содержащий до 78.8 % олова. Гораздо реже в природе встречается станнин (оловянный колчедан) Cu_2FeSnS_4 (27,5 % Sn).
- ГЕРМАНИЙ. Общее содержание в земной коре7×10⁻⁴% по массе, то есть больше, чем, например, сурьмы, серебра, висмута. Однако собственные минералы германия встречаются исключительно редко. Почти все они представляют собой сульфосоли: германит Cu₂(Cu, Fe, Ge, Zn)₂ (S, As)₄, аргиродит Ag₈GeS₆, конфильдит Ag₈(Sn, Ce) S₆ и др. Кроме того, германий присутствует почти во всех силикатах, в некоторых месторождениях каменного угля и нефти.

ХИМИЧЕСКИЕ СВОЙСТВА

 При нагревании реагируют с кислородом, серой, хлором, не реагируют с водородом, углеродом, азотом.

$$2Pb + O_2 = 2PbO;$$

 $Ge + 2S = GeS_2;$
 $Sn + 2Cl_2 = SnCl_4$

Германий и олово с водой не взаимодействуют. Свинец медленно растворяется в воде:

$$2Pb + O_2 + 2H_2O = 2Pb(OH)_2$$

. В ряду активности Ge стоит между Cu и Ag, т.е. после водорода, а Sn и Pb до водорода. Олово взаимодействуя с разбавленными кислотами вяло вытесняет водород:

Sn +
$$H_2SO_{4 \text{ (pa36)}}$$
 = $SnSO_4$ + $H_2\uparrow$
Sn + 2HCl = $SnCl_2$ + $H_2\uparrow$

Все три элемента взаимодействуют со щелочами (германий в присутствии окислителя):

Sn + 2NaOH +
$$2H_2O = Na_2[Sn(OH)_4] + H_2\uparrow$$

Ge + 2NaOH + $2H_2O_2 = Na_2[Ge(OH)_6]$

ХИМИЧЕСКИЕ СВОЙСТВА

С кислородом Ge, Sn, Pb дают два ряда оксидов и гидроксидов (валентности II и IV).

$$SnO + 2HCI = SnCI_2 + H_2O$$

 $SnO + 2NaOH = Na_2SnO_2 + H_2O$

- придроксиды (II) получают взаимодействием соли со щелочью:
 - $SnCl_2 + 2NaOH = Sn(OH)_2 \downarrow + 2NaCl.$
- При избытке щелочи гидроксиды, выпавшие в осадок растворяются: $Sn(OH)_2 + 2NaOH = Na_2[Sn(OH)_4]$
- Оксид свинца PbO_2 можно получить по реакции: $Pb(CH_3COO)_2 + CaOCl_2 + H_2O = PbO_2 \downarrow + CaCl_2 + 2CH_3COOH$
- Все три оксида проявляют амфотерные свойства, но кислотная функция у них выражена сильнее, чем у оксидов в низшей степени окисления. Существует смешанный оксид свинца Pb₃O₄ свинцовый сурик, нерастворимый в воде порошок красивого ярко-оранжевого цвета. При взаимодействии этого оксида с разбавленной азотной кислотой образуются двухвалентный нитрат свинца и диоксид свинца:

$$Pb_3O_4 + 4HNO_3 = PbO_2 \downarrow + 2Pb(NO_3)_2 + 2H_2O$$

- Гидроксиды (IV) можно получить при действии на соли четырехвалентных металлов щелочью:
 - $SnCl_4 + 2NaOH = Sn(OH)_4 \downarrow + 2NaCl$
- Гидроксиды (IV) амфотерны:
 - $Sn(OH)_4 + H_2SO_4 = Sn(SO_4)_2 + H_2O$

ОЛОВЯННАЯ ЧУМА

Есть у олова свойство, которое называют «оловянной чумой». Металл «простужается» на морозе уже при -13°C и начинает постепенно разрушаться. При температуре -33°C свойство прогрессирует с невероятной быстротой — оловянные изделия превращаются в серый порошок. Именно из-за оловянной чумы до нас не дошли известнейшие коллекции оловянных солдатиков из прошлого.

Почему сейчас не случаются подобные истории? Только по одной причине: оловянную чуму научились «лечить». Выяснена ее физико-химическая природа, установлено, как влияют на восприимчивость металла к «чуме» те или иные добавки. Оказалось, что алюминий и цинк способствуют этому процессу, а висмут, свинец и сурьма, напротив, противодействуют ему

ПРИМЕНЕНИЕ ГЕРМАНИЯ

- полупроводниковая техника, используется для изготовления диодов, триодов, кристаллических детекторов и силовых выпрямителей.
- в дозиметрических приборах и приборах, измеряющих напряженность постоянных и переменных магнитных полей.
- инфракрасная техника, в частности производство детекторов инфракрасного излучения, ра области 8-14 мкм.
- стекла на основе GeO₂

ПРИМЕНЕНИЕ ОЛОВА

- безопасное, нетоксичное, коррозионностойкое покрытие в чистом виде или в сплавах с другими металлами
- изготовления тары пищевых продуктов
- известный сплав пьютер используется для изготовления посуды.
- используется для создания сверхпроводящих проводов на основе интерметаллического соединения Nb₃Sn.
- двуокись олова очень эффективный абразивный материал, применяемый при «доводке» поверхности оптического стекла.

ПРИМЕНЕНИЕ ОЛОВА

- оловоорганические стекла надежно защищают от рентгеновского облучения, полимерными свинец- и оловоорганическими красками покрывают подводные части кораблей, чтобы на них не нарастали моллюски.
- в химических источниках тока в качестве анодного материала
- перспективно использование олова в свинцово-оловянном аккумуляторе
- олово имеет непосредственное отношение к рождению мелодичных звуков в самых различных колоколах, поскольку оно входит в состав медных сплавов применяемых для их отливки.
- защита древесины от гниения, уничтожение насекомых-вредителей и многое другое.

ПРИМЕНЕНИЕ СВИНЦА

- в производстве свинцовых аккумуляторов.
- свинец сильно поглощает γ-лучи и рентгеновские лучи, благодаря чему его применяют как материал для защиты от их действия (контейнеры для хранения радиоактивных веществ, аппаратура рентгеновских кабинетов и других).
- изготовление оболочек электрических кабелей, защищающих их от коррозии и механических повреждений.
- оксид Свинца РbО вводят в хрусталь и оптическое стекло для получения материалов с большим показателем преломления

