

School of Engineering

Engineering Materials

Lecture 1:

Course Overview & Introduction

Class Policy

 Attendance is mandatory
 Switch off all mobile electronic devices while in class
 Grading: 10% Quiz avg. 30% Midterm 60% Final Exam
 Cheating will NOT be tolerated
 Moodle will be utilized

Lecture Schedule

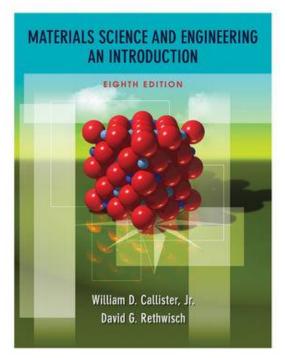
				Group 1	Group 2						
Grig	wk1	16-Aug	22-Aug	L1	L1						
Grig	wk2	23-Aug	29-Aug	L2	L2						
Grig	wk3	30-Aug	5-Sep	Hoilday	L3						
Grig	wk4	6-Sep	12-Sep	L3	L4						
Grig	wk5	13-Sep	19-Sep	L4	L5						
Grig	wk6	20-Sep	26-Sep	L5	Hoilday						
Grig	wk7	27-Sep	3-Oct	L6	L6						
	wk8	4-Oct	10-Oct	Midterm							
	wk9	11-Oct	17-Oct	Project week							
Match	wk10	18-Oct	24-Oct	L7	L7						
Match	wk11	25-Oct	31-Oct	L8	L8						
Match	wk12	1-Nov	7-Nov	L9	L9						
Match	wk13	8-Nov	14-Nov	L10	L10						
Match	wk14	15-Nov	21-Nov	L11	L11						
Grig	wk15	22-Nov	28-Nov	L12	L12						
Grig	wk16	29-Nov	5-Dec	L13	L13	Review					
	Final	6-Dec	10-Dec		Final examination						

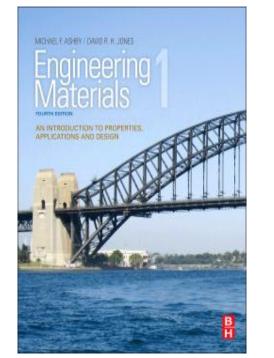
Lecture Schedule (2)

L1	General							
L2	Atomic Strue	cture and In	teratomic B	onding				
L3	Structure of	Crystalline	Solids					
L4	Imperfection	ns in Solids						
L5	Diffusion							
L6	Phase Diagr	rams						
Mic	lterm							
Project wk								
L7	Mechanical	Properties of	of Metals					
L8	Dislocations and Strengthening Mechanisms							
L9	Failure							
L10	Fatigue							
L11	Metal castin	g and formi						
L12	Phase Tranf	formations						
L13	Processing	of metal allo	bys					

Major Topics

- □ Effects of structure on material properties;
- Mechanical properties, failure and strengthening mechanisms;
- Applications and processing of common engineering materials such as metals & nonferrous alloys, ceramics, polymers, and composites;
- Economic, environmental and social issues of material usage and considerations for materials selection in designs.


Learning Outcomes


On completion of the course the students will be able to: Explain the influences of microscopic structure and defects on material properties, including dislocation and strengthening mechanisms Design and control heat treatment procedures to achieve a set of desirable mechanical characteristics Understand the applications and processing of common engineering materials including metals & nonferrous alloys, ceramics, polymers, and composites Utilize the knowledge in materials selection processes taking further considerations of the economic, environmental and social issues

Textbooks

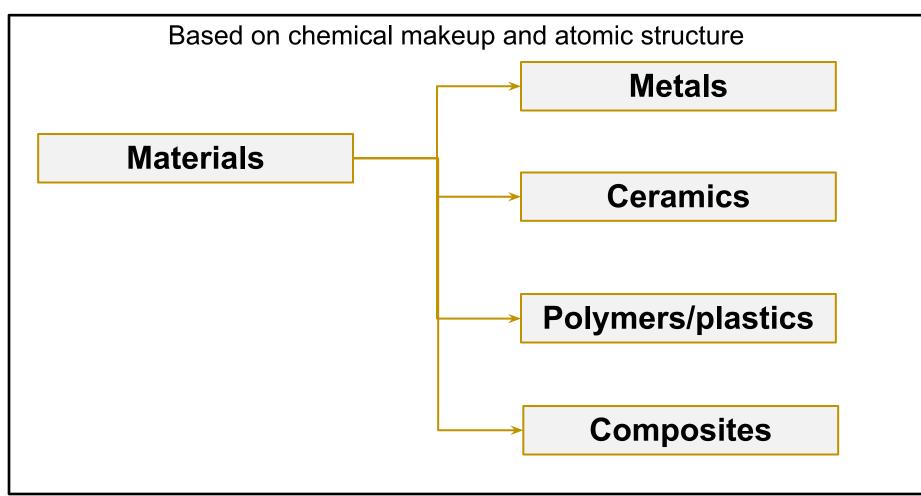
Materials Science and Engineering: An Introduction, 8th Edition William D. Callister, David G. Rethwisch

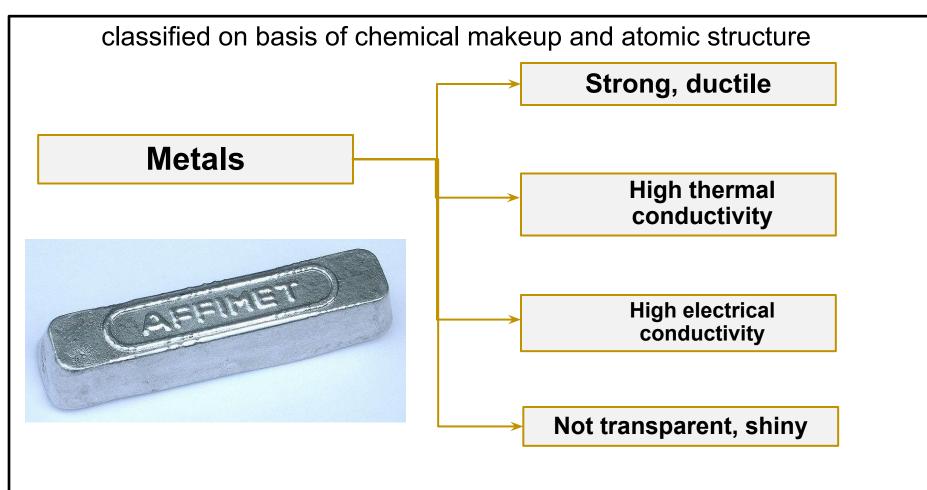
Engineering Materials 1: An Introduction to Properties, Applications and Design, 4th Edition <u>Michael F. Ashby</u>, <u>D R H Jones</u>

Classification of Materials

Based on functions and applications:

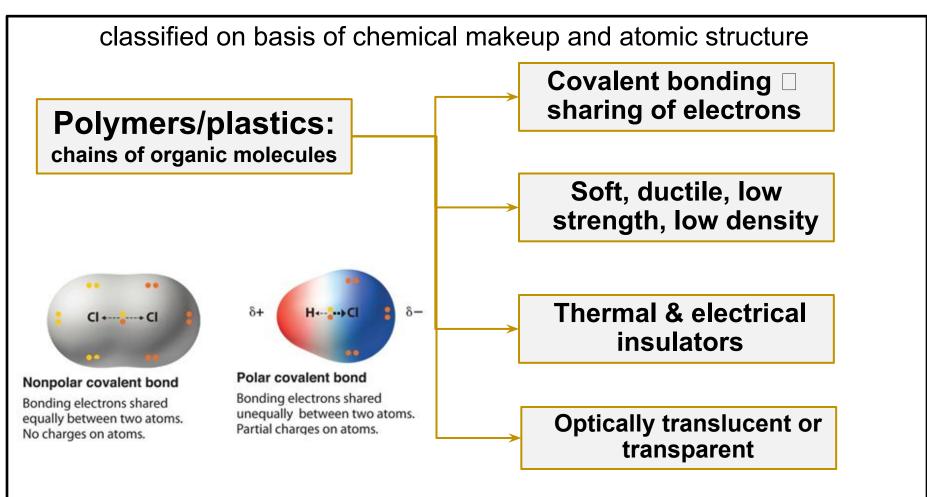
- Aerospace
- Biomedical
- Electronic Materials
- Energy Technology and Environment
- Magnetic Materials
- Optical and Photonic Materials
- "Smart" Materials
- Structural Materials



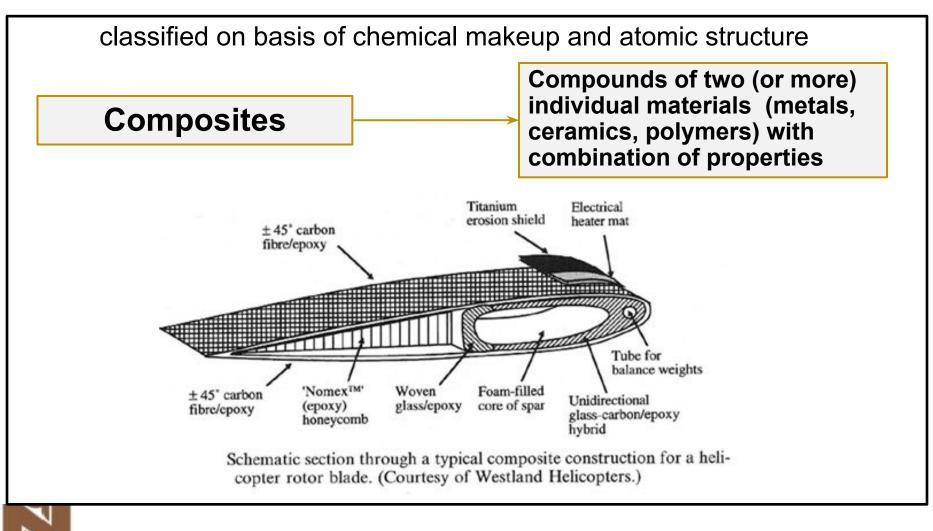


Classification of Materials

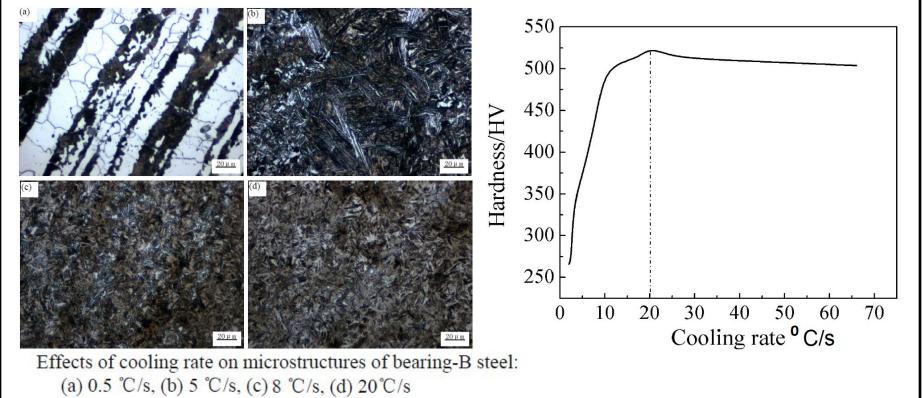
Properties of Materials



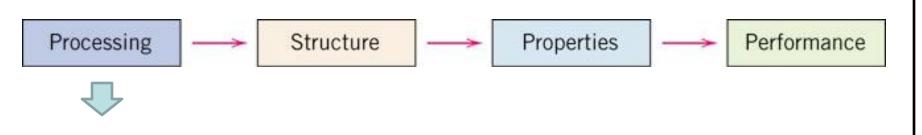
Properties of Materials



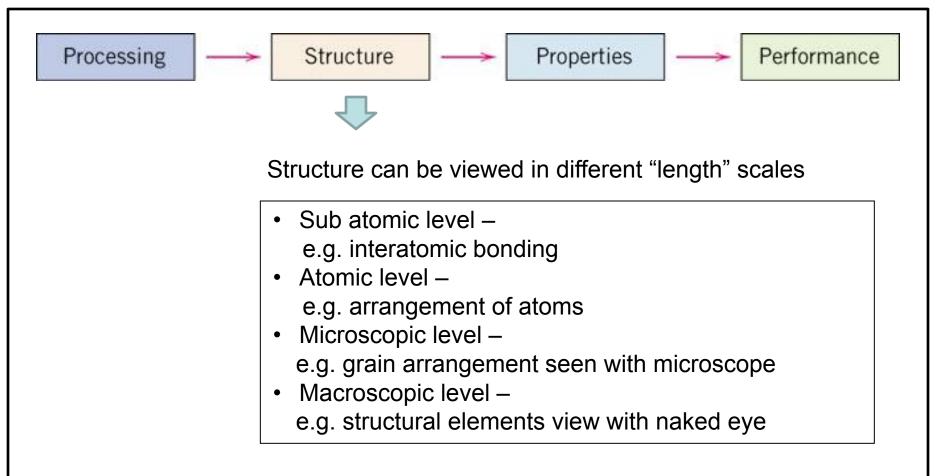
Properties of Materials

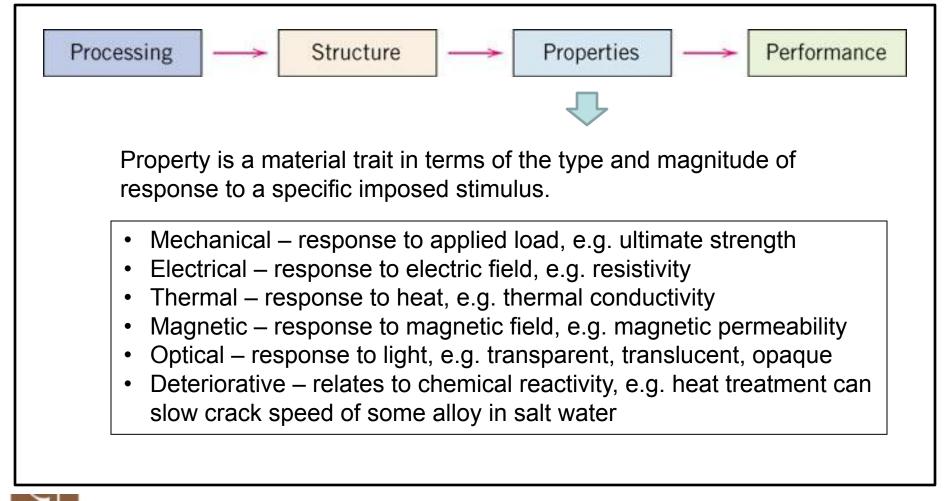


Properties of Materials



- Properties depend on structure, e.g.: steel hardness
- Processing can change structure, e.g.: structure versus cooling rate of steel




Different materials should be processed differently; Same materials can be processed differently for different geometries


- Moulding process
- Plastic deformation process
- Joining process
- Mechanical working process
- Heat treatment process

The Materials Selection Process

1. Pick Application — Determine required Properties

Properties: mechanical, electrical, thermal, magnetic, optical, deteriorative.

- Properties → Identify candidate Material(s)
 Material: structure, composition.
- Material → Identify required Processing Processing: changes structure and overall shape ex: casting, sintering, vapor deposition, doping forming, joining, annealing.

Materials Selection Considerations

Cost

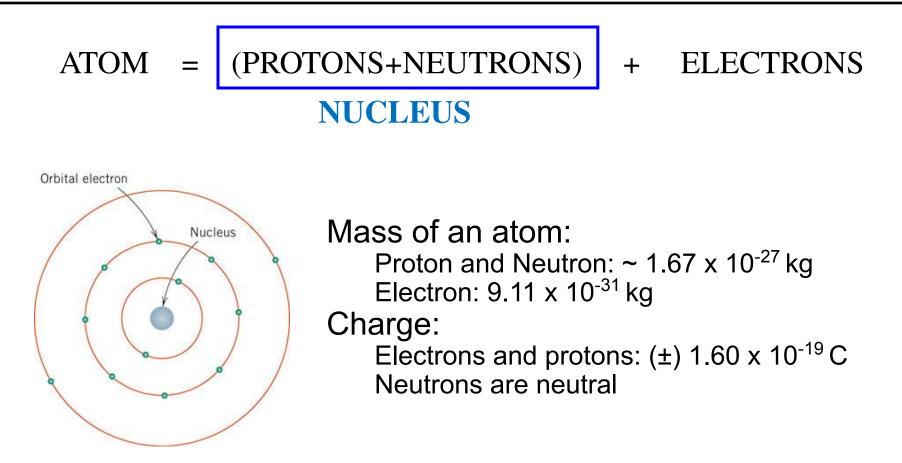
- □ "Green" environmentally friendly
- □ Sustainability: e.g. bamboo bicycle frame
- Easily available commercially in large quantities
- Delitical: e.g. sanctions on nuclear materials
- □ Technology: e.g. heat shield for space shuttle
- □ Degradation during service: e.g. corrosion

Module Summary

- You will learn in this module about:
- Imaterial structure
- how structure dictates properties
- □ how processing can change structure
- □ commonly used engineering materials

This module will help you to:

- ✓ Use the right material for the job.
- Understand the relation between properties, structure, and processing.
- Recognize new design opportunities offered by materials selection.


Approach

- Study microstructures, starting with the atom, atomic bonding, and how different classes of materials are bonded together
- □ Look at the effect of composition on microstructure
- □ Look at the effect of processing on microstructure
- □ Connect how microstructure relates to properties

We shall first do some revision

Revision - Atomic Structure

Revision - Atomic Structure

Z = Atomic number = number of protons in nucleus This is used to identify element

N = number of neutrons in nucleus This is used to identify isotopes, written as ${}^{(Z+N)}X_{Z}$: (e.g. ${}^{14}C_{6}$ and ${}^{12}C_{6}$) where: A = Atomic mass unit (amu)

1 amu is defined as the 1/12 of the atomic mass ${}^{12}C_{6}$

Atomic mass of ${}^{12}C_6$ is 12 amu: 6 protons (Z=6) + 6 neutrons (N=6)

This is approximately the total mass of protons + total mass of neutrons

Therefore 1 amu = $Mass_{proton} \sim Mass_{neutron} = 1.67 \times 10^{-27} \text{ kg}$ and A = Atomic Mass = Z + N

 $N_{AV} = 1$ mole = 6.023 x 10²³ molecules or atoms (Avogadro's number) Atomic weight is expressed in amu/atom, i.e. 1 amu/atom = 1g/mol

Revision - Mole Concept

$$N_{A} = N_{AV} \left(\frac{\rho}{M}\right)$$

- \square N_A = number of atoms per cm³
- $\Box \rho$ = material density g per cm³
- M = atomic weight of material g per mole
- \square N_{AV} = Avogadro's number = 6.023 x 10²³

Revision – Periodic Table

									Metal								
IA 1 H 1.0080	ША			Key 29 Atomic number Cu - Symbol					Nonme	tal		IIIA	IVA	VA	VIA	VIIA	0 2 He 4.0026
3 Li 6.941	4 Be 9.0122			63.54 Atomic weight				Interme	diate		5 B 10.811	6 C 12.011	7 N 14.007	8 0 15.999	9 F 18.998	10 Ne 20.180	
11 Na 22.990	12 Mg 24.305	IIIB	IVB	VB	VIB	VIIB		VIII		IB	IIB	13 Al 26.982	14 Si 28.086	15 P 30.974	16 S 32.064	17 Cl 35.453	18 Ar 39.948
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
39.098	40.08	44.956	47.87	50.942	51.996	54.938	55.845	58.933	58.69	63.54	65.41	69.72	72.64	74.922	78.96	79.904	83.80
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te		Xe
85.47	87.62	88.91	91.22	92.91	95.94	(98)	101.07	102.91	106.4	107.87	112.41	114.82	118.71	121.76	127.60	126.90	131.30
55	56	Rare	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	earth	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
132.91	137.34	series	178.49	180.95	183.84	186.2	190.23	192.2	195.08	196.97	200.59	204.38	207.19	208.98	(209)	(210)	(222)
87 Fr (223)	88 Ra (226)	Acti- nide series	104 Rf (261)	105 Db (262)	106 Sg (266)	107 Bh (264)	108 Hs (277)	109 Mt (268)	110 Ds (281)								
Rare earth series		57	58	59	60	61	62	63	64	65	66	67	68	69	70	71	
		La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu	
		138.91	140.12	140.91	144.24	(145)	150.35	151.96	157.25	158.92	162.50	164.93	167.26	168.93	173.04	174.97	
Actinide series		89	90	91	92	93	94	95	96	97	98	99	100	101	102	103	
		Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr	
		(227)	232.04	231.04	238.03	(237)	(244)	(243)	(247)	(247)	(251)	(252)	(257)	(258)	(259)	(262)	

Test Your Understanding?

Compare the number of atoms per cm³ for Graphite (Carbon) and Diamond (Carbon) given:

- □ Graphite ρ = 2.3 g per cm³,
- □ Diamond ρ = 3.5 g per cm³;

$$N_{A} = N_{AV} \left(\frac{\rho}{M}\right)$$

□ Graphite N_A = 11.5 × 10²² atoms per cm³,
 □ Diamond N_A = 17.5 × 10²² atoms per cm³;
 Any ideas why?

Announcements

Reading:

- Chapter 1 in Materials Science & Engineering for this lecture
- Chapter 2 in Materials Science & Engineering for next lecture

Self-help problems:

• None

