

Their Origin and Application

ESD Event Classification

- From EMI to EOS Speed Classification
- EMI caused ESD has short and repetitive pulses with low energy.
- EOS is and ESD event with unlimited Current/Time constrains
- HBM, MM & CDM model typical events in the manufacturing areas.

Introduction

- What is an ESD Sensitivity Level?
- 2How is it obtained?
- Why is it important to the user?
- Why different test models?

Overview

- ESD Models Provide a way to characterize the sensitivity of components to ESD
- The different ESD models simulate the different environments experienced by electronic components during the manufacturing process.
- Parts and assemblies may be exposed to more than one type of ESD event over the manufacturing and test life cycle.

HBM

ESD Models: (differences & interrelation)

Purpose of ESD Models

- Models establish Benchmarks for ESD Sensitivity.
- Different Models are used to simulate different work environments.
- Models provide help to prevent and analyze ESD Failures

ESD Event Test Models

- Human Body (HBM): discharging event through the body and the part to ground.
- Machine (MM): discharge voltage through automated handling equipment or hand-tools and the part to ground.
- Charged Device (CDM): discharge into or out of a part due to charge accumulation within the part itself.

ESD Damage to Die Structure

- Damage types can vary depending on event models.
- Long, higher Voltage HBM event can look like electrical overstress at die periphery.
- Fast, high Current CDM event causes defects in core area which can be latent failures.
 - Must use advanced FA techniques to locate sites.

A Comparison of Electrostatic Discharge Models and Failure Signatures for CMOS Integrated Circuit Devices, M. Kelly, G. Servais, T. Diep, S. Twerefour, D. Lin, G. Shah, EOS/ESD Symposium 95

ESD Sensitivity Levels

Human Body Model		Machine Model		Charged Device Model		
Class 0	<250 V	Class M1	< 100 V	Class C1	< 125 V	
Class 1A	250 V to< 500 V	Class M2	100 V to < 200 V	Class C2	125 V to < 250 V	
Class 1B	500 V to < 1 kV	Class M3	200 V to < 400 V	Class C3	250 V to < 500 V	
Class 1C	$1 \text{ kV to} \leq 2 \text{ kV}$	Class M4	≥ 400 V	Class C4	500 V to <1 kV	
Class 2	2 kV to < 4 kV			Class C5	1 kV to < 1.5 kV	
Class 3A	4 kV to < 8 kV			Class C6	1.5 kV to < 2 kV	
Class 3B	$\geq 8 \text{ kV}$			Class C7	$\geq 2 \text{ kV}$	

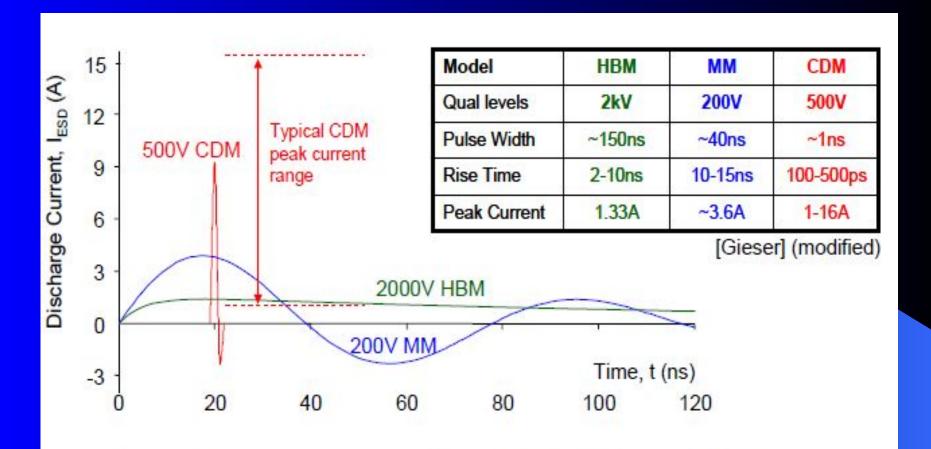


Figure 4: Comparison of current waveforms for CDM, MM, and HBM ESD events.

White Paper 2: A Case for Lowering Component Level CDM ESD Specifications and Requirements, Industry Council on ESD Target Levels, March 2009

Models Comparisons

ESD Models	Z_{D}	R_c	C_{\scriptscriptstyleD}	L _D	E _s in μJ	5τ in ηs	P _{ave} (W)	I _{PS}
$V_c = 1000 V$	Тур.#	Req#	Req#	Typ#	½CV ²	5R _e C	$E/ au_{ m eff}$	V/R _e
НВМ	0	1500	100	0	50	750	~67	0.67
MM	55	2	200	5.0E-07	100	160	625	17.5
CDM	42	25	15	1.0E-08	7.5	5	>750	15

ESD Models vs. Sources of Threats

Examples of Sources of Threats	HBM	MM	CDM
Operator	V		V
Work bench	V	$\sqrt{}$	$\sqrt{}$
Pick and Place Machine		V	V
Automatic Test Equipment		V	V
Device package			$\sqrt{}$
Mate/De-mate of harnesses	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$
RF Signals			$\sqrt{}$

"Class 0" Parts Protection

- "Class 0" has become the generic term to define parts which are very sensitive to ESD.
- It now encompass parts sensitive to HBM
 <250v as well as parts damaged by EMI
- Sensitivity for these parts needs to be also defined using CDM classifications.
- {EPAs as currently implemented at GSFC can protect parts sensitive to ~100 V HBM}

Model Implementation

- NASA-HDBK-8739.21 (in Approval Cycle) Guide for Creating an ANSI/ESD S20.20 Implementation Plan
 - Focus is on HBM: emphasis on operator grounding,
 dissipative surfaces, reduction of triboelectric charging
 - For HBM & MM the methods for protective practices and creating protective spaces are highly reproducible and "low tech"
 - Proper implementation requires training and follow-up
- HBM safety methods have brought HBM & MM failures down (now are ∼10% of failures encountered industry-wide)

Model Implementation

- Recent failures of high speed devices (LVDS, FPGAs)
 drive users to Class 0 HBM...
- But IC manufacturers calculate that about 90% of the failures from the field are due to CDM ESD events.
- CDM-related field returns are associated with low, medium, and high sensitivity devices.
- Safety methods for CDM are highly customized because the model is less mature (many unknown variables and variable relationships, rapidly changing characteristics

Class 0 & CDM

- Class 0 refers to the HBM model
- Currently most ESD damage is caused by much shorter pulses best defined in the CDM model.
- ESD pulses can be clamped by internal shunts and bypasses at the expense of design complexity and speed.
- There is a limit beyond which the device cannot be internally protected.

Limits of Design-in Protection

- CDM protection by the design is driven by the peak current from the IC package discharge at the CDM voltage targeted.
- The larger the package the higher the peak current of the CDM pulse created.
- The smaller the geometry of the circuit the lower the breakdown voltage of the circuit
- Present Theoretical Limit ≈ 125v CDM

Protection of Devices Sensitive to Class 0 ESD

- "Shalls" related to HBM Class 0 protection:
 - Dissipative chairs and stools
 - Conductive or dissipative floors or floor mats
 - Relative humidity
 - Ionizers
 - Smocks
 - Procedures for Mating and de-mating of harnesses
 - Soldering iron testing
 - Signage

External ESD Control Measures for Extremely Sensitive Devices

Measure Area Static Charges

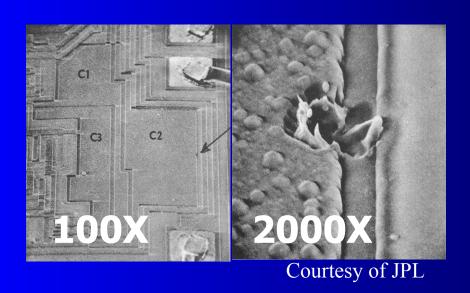
Assess Possibilities for Area charge Reduction

Avoid Hard Discharges

Charged Board Events

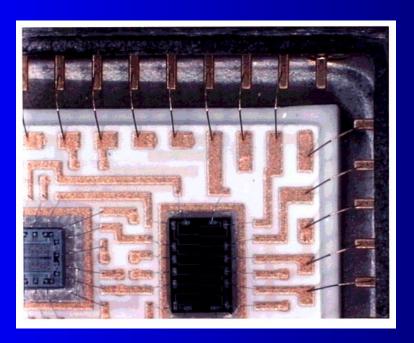
- CBE are caused when a board is pulled from the bag and place on a conductive surface
- This ESD hazard was often overlooked
- During FA the components failure is usually classified as EOS damage.
- Recent data reported by several Companies indicates that CBEs are commonly missed in FA

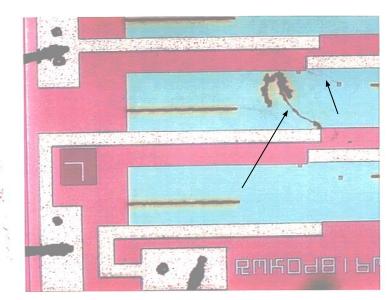
Where to Get More Information


- WEB searches under "ESD Models"
- ESDA publications
- Consulting services provide Advice on tough ESD problems and Solutions.

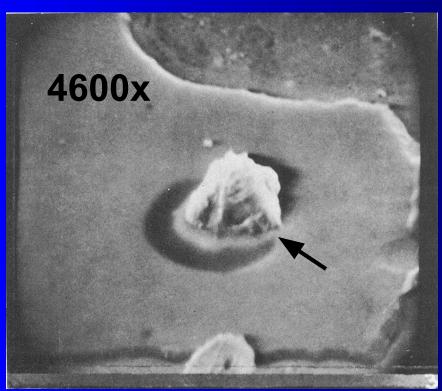
References

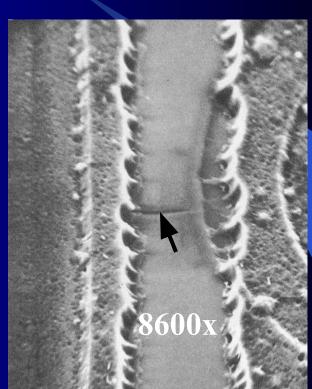
- 1. ANSI/ESD STM5.1-2001 ESD Sensitivity Testing (HBM)
- 2. ANSI/ESD STM5.2-1999 ESD Sensitivity Testing (MM)
- 3. ANSI/ESD STM5.3.1-1999 ESD Sensitivity Testing (CDM)
- 4. ANSI/ESD SP5.2.2-2004 ESD Sensitivity Testing (SDM)
- 5. ANSI/ESD SP5.5.1-2004 ESD Sensitivity Testing (TPL)
- 6. Scott M. Hull, "ESD Failures in Thin-Film Resistors" NASA/Goddard Space Flight Center
- 7. http://esdsystems.com/whitepapers/
- 8. http://www.semiconfareast.com
- 9. http://www.ce-mag.com/archive/01/09/henry.html
- 10. http://www.ce-mag.com/ce-mag.com/archive/01/03/0103CE_046.html
- 11. White Paper: Industry Council on ESD Target Levels on CDM
- 12. http://ossma-dev.gsfc.nasa.gov/ESDResources/index.php
- 13. https://ossmacm.gsfc.nasa.gov/


Thank you Any Questions?


Typical HBM Generated Failures

Scott M. Hull NASA/GSFC


Typical MM ESD Stress Failure



Scott M. Hull NASA/GSFC

Typical CDM generated failures

Courtesy of JPL

Courtesy of JPL

Typical CDM Generated Failure

Courtesy of Frederick Felt GSFC Part Analysis Lab.

ESD event (~1 KV) shown at arrow after parallel Polishing

10um