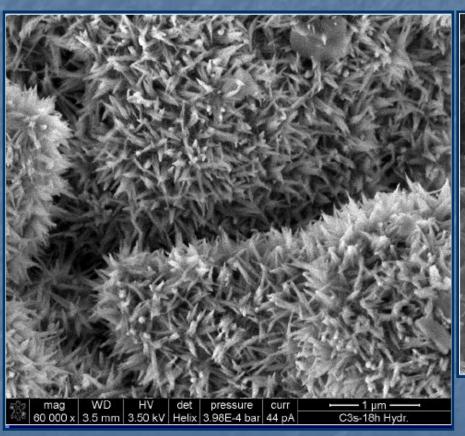
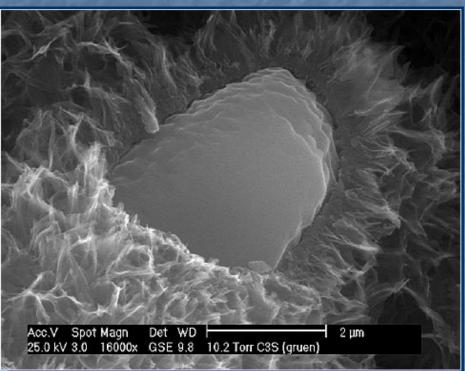
Гидратация портландцемента

Основные минералы и компоненты портландцемента

- алит твердый раствор С₃S с примесями MgO, Al₂O₃
- белит твердый раствор на основе С₂S
- трехкальциевый алюминат C₃A
- четырехкальциевый алюмоферрит С_₄AF
- двуводный гипс CaSO₄ · 2H₂O
- свободные CaO и MgO
- легко растворимые щелочи К₂О и Na₂O

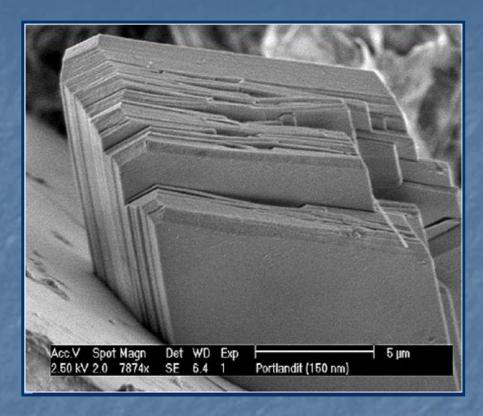

- 1 этап: $3CaO \cdot SiO_2 + xH_2O \rightarrow 3CaO \cdot SiO_2 \cdot xH_2O$
- 2 этап: $3CaO \cdot SiO_2 \cdot xH_2O \rightarrow (0,8-1,5)CaO \cdot SiO_2 \cdot yH_2O + (1,5-2,2)Ca(OH)_2 + (x-y)H_2O$
- <u>3 этап:</u> (0,8-1,5)CaO·SiO₂·yH₂O + (0-1,2) Ca(OH)₂ \rightarrow (1,5-2,0)CaO·SiO₂·zH₂O


Плохо закристаллизованные ГСК в цементном камне:

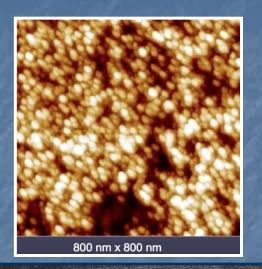
$$(0.8 - 1.5)$$
CaO·SiO₂·yH₂O - C-S-H(I)

$$(1,5-2,0)$$
CaO·SiO₂·zH₂O - C-S-H(II)

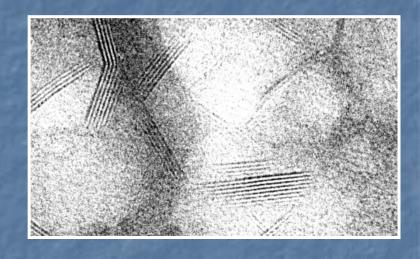

Морфология ГСК

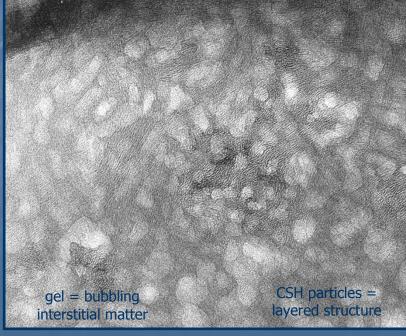


Размер кристаллов ГСК — менее 1-2 мкм; $S_{yд.}$ кристаллов ГСК — 300-350 м 2 /г

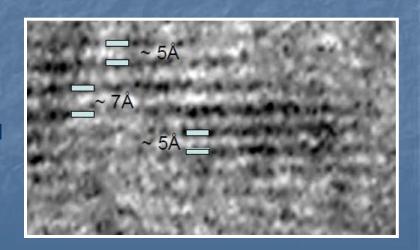


Размер кристаллов $Ca(OH)_2 - 15 - 25$ мкм;

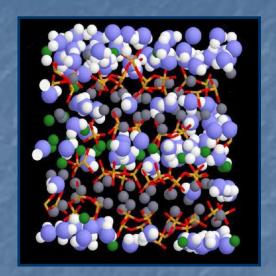

<u>Степень гидратации C₃S:</u>

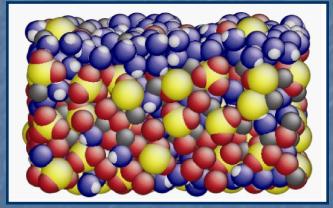

1 сутки — 25 — 35 % 28 суток — 75 — 85 %

Гидратация C_3S Структура геля ГСК

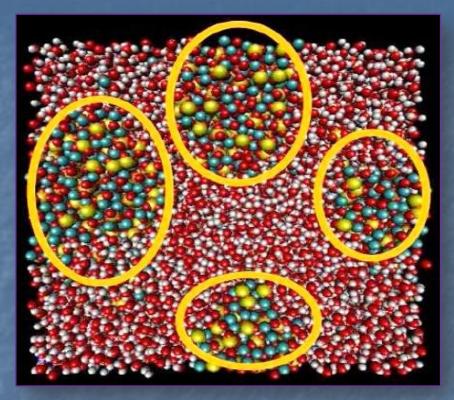


ACM

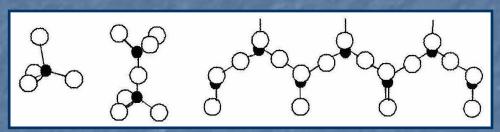




HRTEM



<u>Структура геля ГСК</u>



В малых объемах структура геля ГСК приближается к искаженной кристаллической или стеклообразной, на более дальних расстояниях она аморфна и включает пустоты, в которые могут обратимо входить молекулы воды


Хорошо закристаллизованные ГСК — образуются в гидротермальных условиях, различаются составом, структурой кремнекислородного аниона, формой и размером кристаллов):

Структура кремнекислородного аниона

- Ортосиликаты: афвиллит С₃S₂H₃, хондродит кристаллизуются в виде слоистых пластинок, кристаллов неопределенной формы
- <u>Диортосиликаты:</u> гидрат трехкальциевого силиката кристаллизуются в виде призм, волокон;
- <u>Полимерные:</u> тоберморит $C_5S_6H_{5,5}$, ксонотлит C_6S_6H , фошагит C_4S_3H , гиллебрандит C_2SH_2 трускотит $C_6S_{10}H_3$, гиролит $C_2S_3H_2$, некоит $C_3S_6H_5$ и окенит $C_3S_6H_6$ кристаллизуются в виде мелких чешуек, волокон, слоистых пластинок,;

Изменение степени полимеризации кремнекислородного аниона в процессе твердения C₃S

- 2CaO·SiO₂ + xH₂O → (1,6 − 1,9)CaO·SiO₂·xH₂O + (0,1 − 0,4)Ca(OH)₂
- Структура и морфология ГСК аналогично С₃S
- Степень гидратации C₂S:

■ S_{уд.} кристаллов ГСК — 200 — 250 м²/г

В отсутствие CaSO₄·2H₂O

- $3CaO \cdot Al_2O_3 + 22H_2O \rightarrow 4CaO \cdot Al_2O_3 \cdot 19H_2O + 2Al(OH)_3 (C_4AH_{19})$
- $_{\bullet}$ 3CaO·Al₂O₃ + 16H₂O → 4CaO·Al₂O₃·13H₂O + 2Al(OH)₃ (C₄AH₁₃)
- $3\text{CaO} \cdot \text{Al}_2\text{O}_3 + 9\text{H}_2\text{O} \rightarrow 2\text{CaO} \cdot \text{Al}_2\text{O}_3 \cdot 8\text{H}_2\text{O} + \text{Ca(OH)}_2$ (C₂AH₈)
- 3CaO·Al₂O₃ + 12H₂O → CaO·Al₂O₃·10H₂O + 2Ca(OH)₂ (CAH₁₀)

В присутствии CaSO₄ · 2H₂O

3CaO·Al₂O₃ + 3(CaSO₄·2H₂O) + 32H₂O \rightarrow 3CaO·Al₂O₃·3CaSO₄·32H₂O

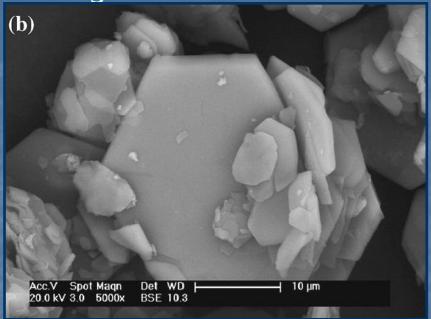
 $(C_3AC\hat{s}_3H_{32})$ TFCAK

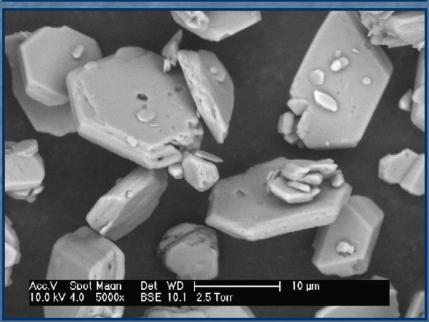
3CaO·Al₂O₃ + CaSO₄·2H₂O + $18H_2O \rightarrow 3CaO \cdot Al_2O_3 \cdot CaSO_4 \cdot 18H_2O$ $(C_3AC\$H_{18}) M\GammaCAK$

Структура и морфология ГАК

- 4CaO · Al₂O₃ · 19H₂O
- 4CaO · Al₂O₃ · 13H₂O
- $2CaO \cdot Al_2O_3 \cdot 8H_2O$
- $\quad \text{CaO} \cdot \text{Al}_2\text{O}_3 \cdot 10\text{H}_2\text{O}$
- $3CaO \cdot Al_2O_3 \cdot CaSO_4 \cdot 18H_2$

AF_m-фаза

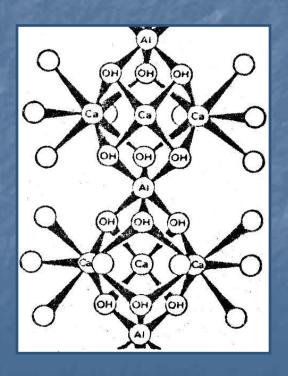

Общая формула:

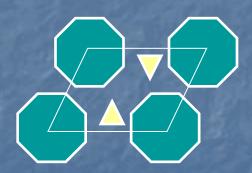

 $[Ca_2Al(OH)_6] \cdot X \cdot nH_2O$

X

 $X - OH^{-}$, SO_4^{2-} , CO_3^{2-} , $Al(OH)_4^{-}$, $Al(OH)_6^{3-}$, Cl^{-} и др.

Размер кристаллов ГАК -20 - 30 мкм;




Структура и морфология ГАК

SCaO · Al₂O₃ · 3CaSO₄ · 32H₂O — AF_t-фаз

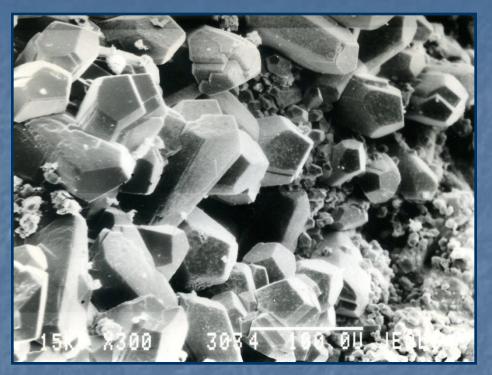
Общая формула:

 $[Ca_2Al(OH)_6 \cdot 12H_2O]_2 \cdot (SO_4)_3 \cdot 2H_2O$

Размер кристаллов эттрингита — — 20 — 50 мкм;

— OH⁻, SO₄²⁻, CO₃²⁻, Al(OH)₄⁻, Al(OH)₀³⁻, Cl⁻ и др.

Структура и морфология ГАК


3CaO · Al₂O₃ · 6H₂O

Общая формула:

Ca₃[Al(OH)₆]₂ – кубическая сингония

В цементе образуют гидрогранаты:

 $Ca_3 \cdot \overline{(Al,Fe)_2O_3 \cdot xSiO_2 \cdot H_2O_{6-2x}}$

Размер кристаллов гидрограната — — до 20 — 60 мкм

Последовательность образования ГАК

при гидратации С₃А:

$$C_3A + H_2O \rightarrow C_4AH_{(13-19)} + C_2AH_8 \rightarrow C_3AH_6$$

1 этап 2 этап

<u>Степень гидратации С₃А:</u>

$$C_3A + H_2O + CaSO_4 \cdot 2H_2O \rightarrow C_3AC\$_3H_{32} \rightarrow C_3AC\$H_{18}$$

Дополнительные реакции:

В присутствии СаСО,

- 3CaO·Al₂O₃ + CaCO₃ + $11H_2O \rightarrow 3CaO \cdot Al_2O_3 \cdot CaCO_3 \cdot 11H_2O$
- 3CaO·Al₂O₃ + 3CaCO₃ + 32H₂O \rightarrow 3CaO·Al₂O₃·3CaCO₃·32H₂O (COMH.)

В присутствии CaCO₃ и Ca(OH)₂:

3CaO·Al₂O₃ + 0,5CaCO₃ + 0,5Ca(OH)₂ + 12H₂O → → 3CaO·Al₂O₃·0,5CaCO₃·0,5Ca(OH)₂·12H₂O

В присутствии CaCl₂:

- 3CaO·Al₂O₃ + CaCl₂·2H₂O + 12H₂O → 3CaO·Al₂O₃·CaCl₂·12H₂O
- $3\text{CaO} \cdot \text{Al}_2\text{O}_3 + 3\text{CaCl}_2 \cdot 2\text{H}_2\text{O} + 32\text{H}_2\text{O} \rightarrow 3\text{CaO} \cdot \text{Al}_2\text{O}_3 \cdot 3\text{CaCl}_2 \cdot 32\text{H}_2\text{O}$ (COMH.)

Гидратация C₄AF

<u>Непрерывные твердые растворы гидроалюмоферритов</u> кальция:

- $4CaO \cdot (Al_2O_3, Fe_2O_3) \cdot (13-19)H_2O$
- $3CaO \cdot (Al_2O_3, Fe_2O_3) \cdot 6H_2O$
- $3\text{CaO} \cdot (\text{Al}_2\text{O}_3, \text{Fe}_2\text{O}_3) \cdot \text{CaSO}_4 \cdot 18\text{H}_2\text{O}$
- $3CaO \cdot (Al_2O_3, Fe_2O_3) \cdot 3CaSO_3 \cdot 32H_2O$
- $3CaO \cdot (Al_2O_3, Fe_2O_3) \cdot CaCO_3 \cdot 11H_2O$

Гидроферритные фазы:

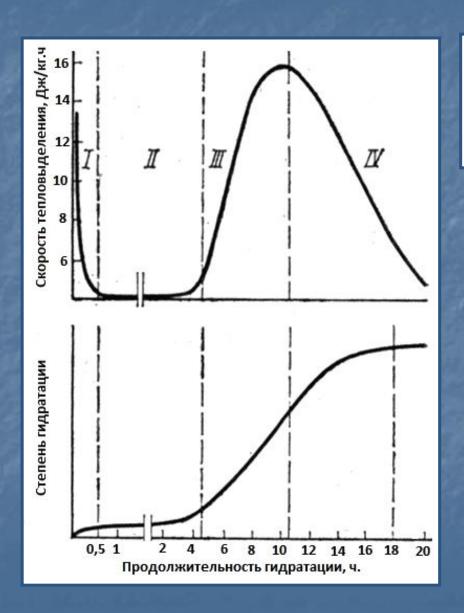
- 4CaO · Fe₂O₃ · 13H₂O
- 3CaO · Fe₂O₃ · 6H₂O
- 3CaO·Fe₂O₃·CaSO₄·18H₂O
- Fe(OH)₃

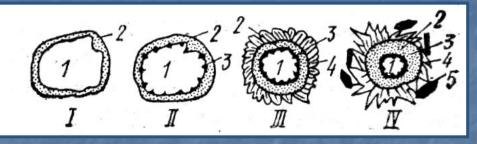
<u>Степень гидратации С₄AF:</u>

Гидратация вторичных фаз

CaO_{CB}

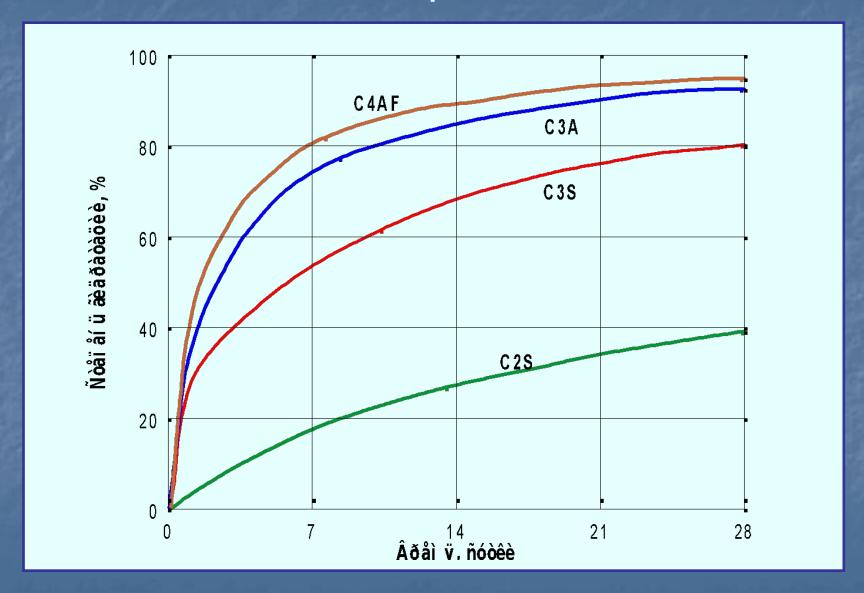
■ CaO + $H_2O \rightarrow Ca(OH)_2$ – портландит

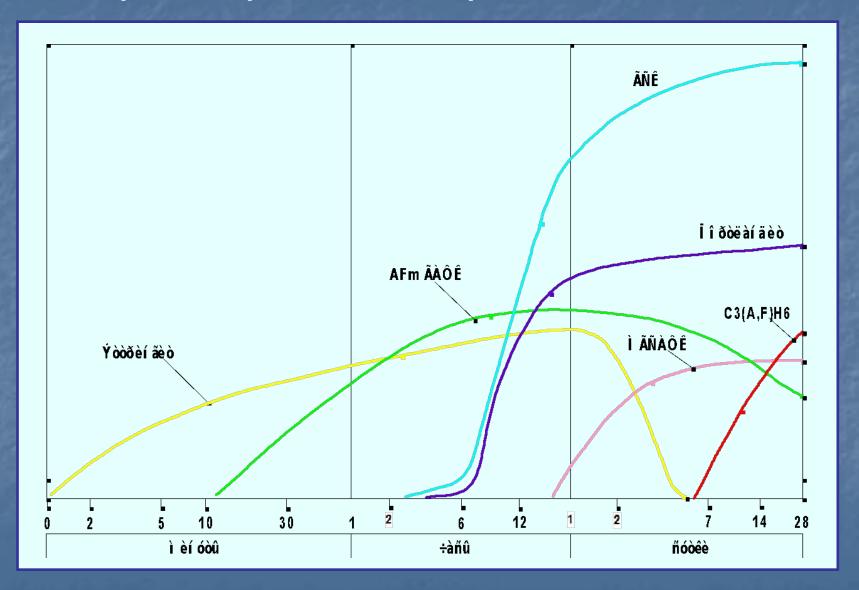

MgO


■ MgO + $H_2O \rightarrow Mg(OH)_2 - брусит$

$K_2O + CaSO_4 \cdot 2H_2O$

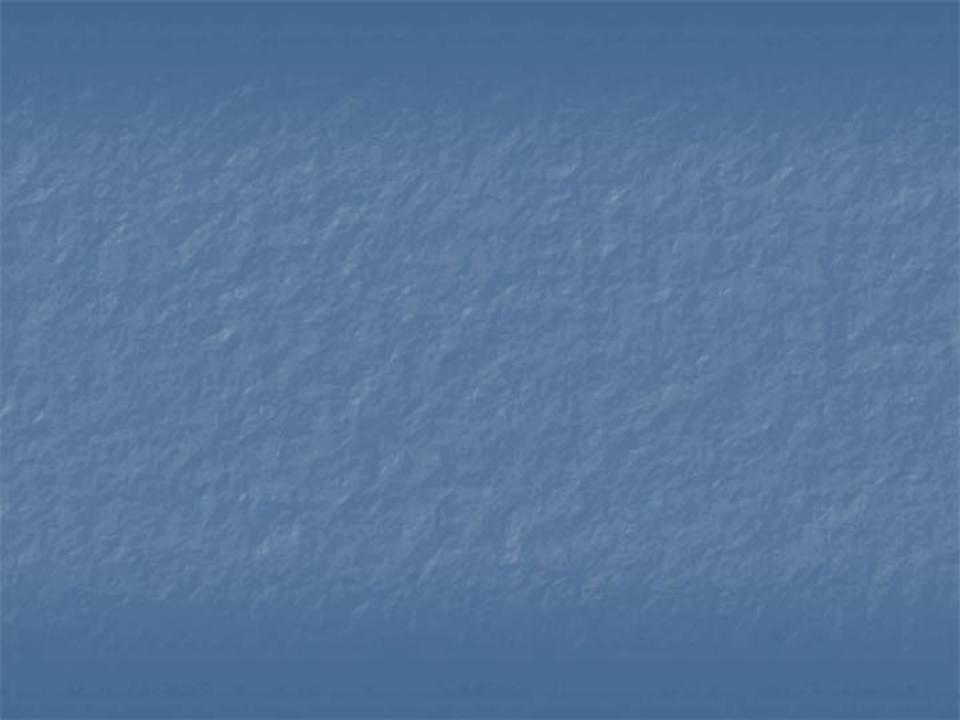
• K_2 Ca(SO₄)₂· H_2 O – сингенит


Кинетика гидратации C₃S



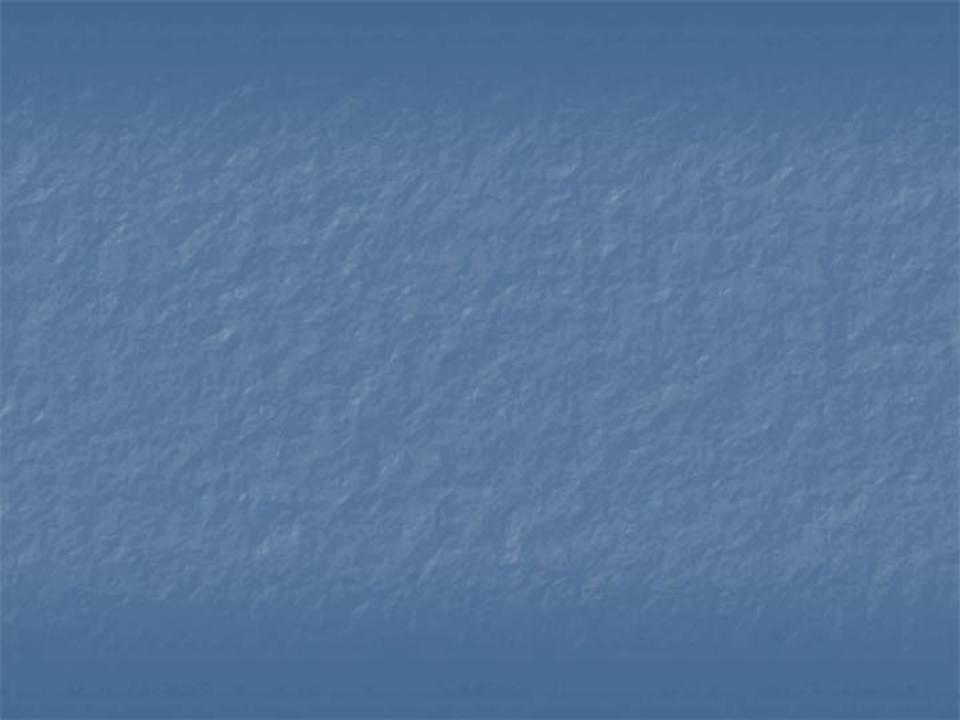
- I начальная быстрая реакция;
- II индукционный период;
- III период повторного ускорения реакции;
- IV период постепенного замедления реакции.

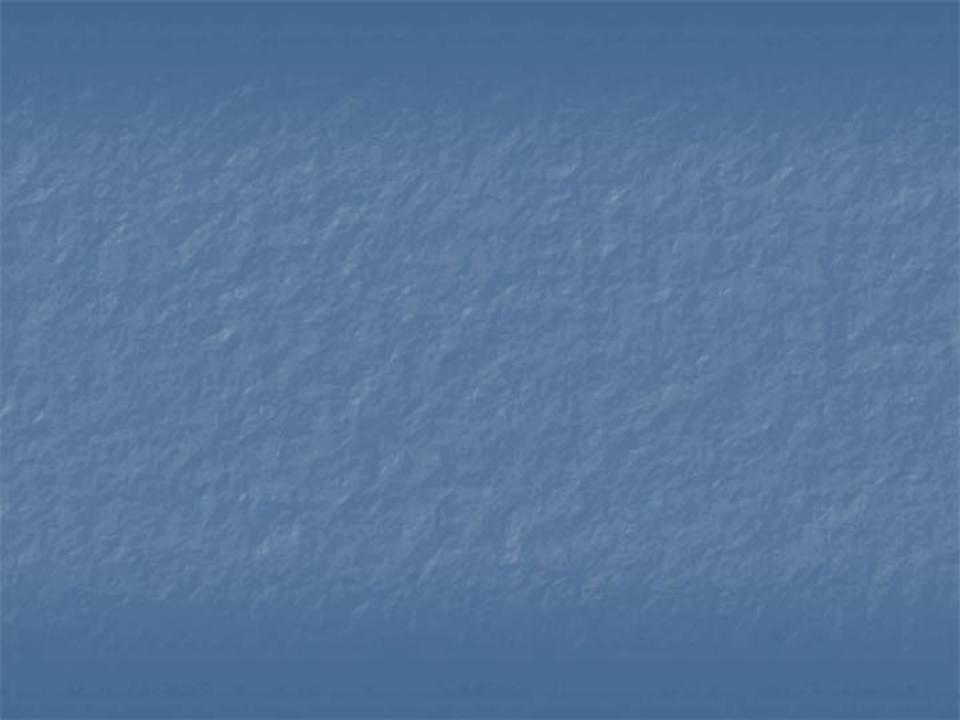
Скорость гидратации клинкерных минералов

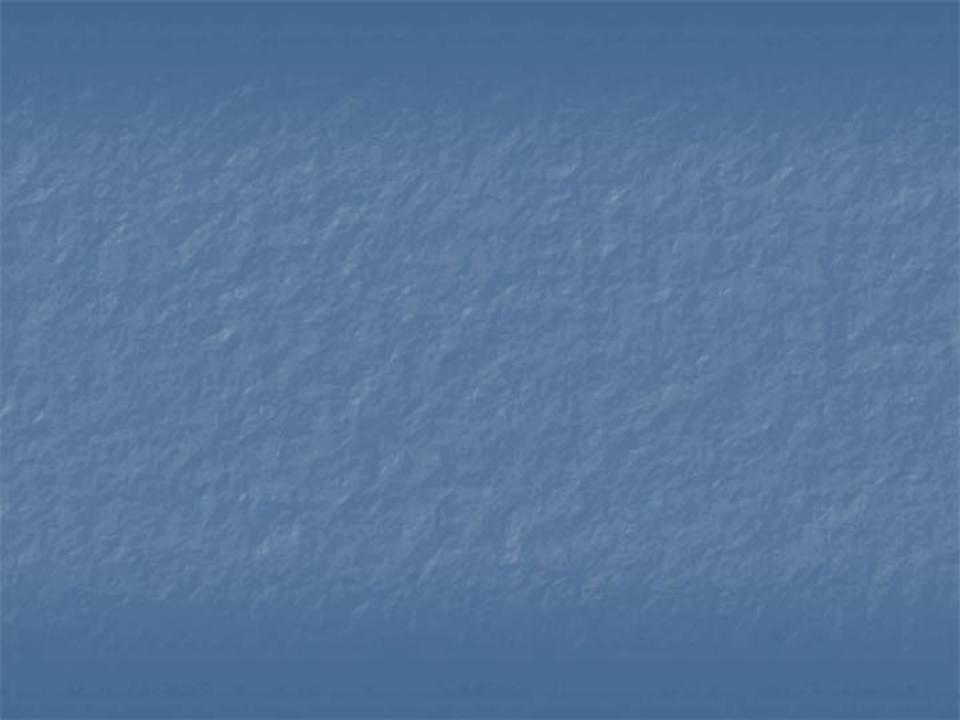

Последовательность фазообразования при гидратации портландцемента

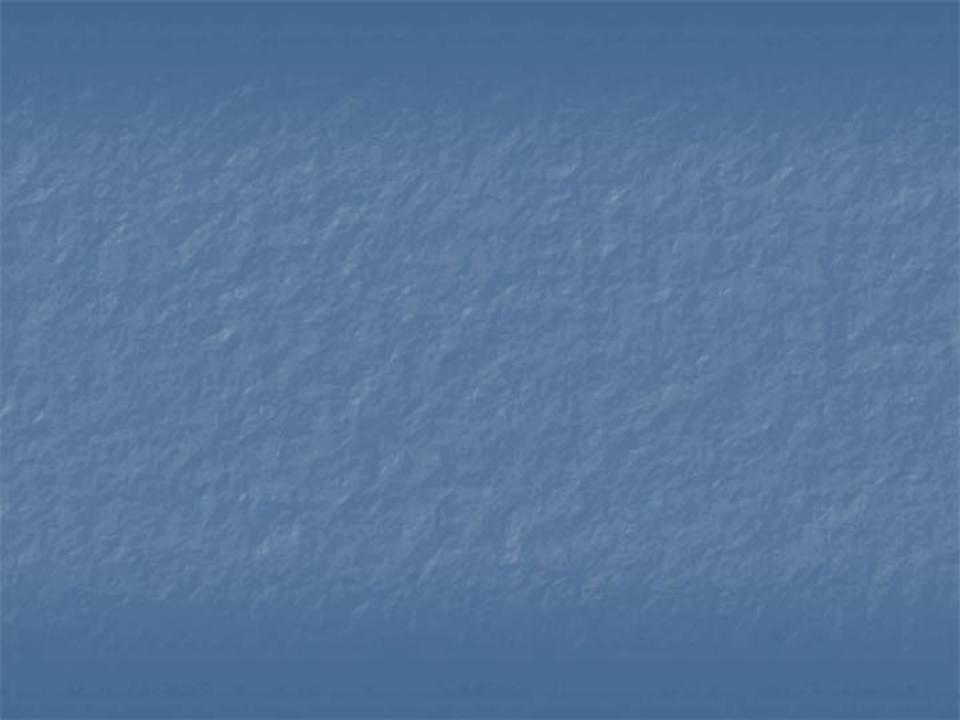
Видеофильмы процессов гидратации минералов портландцементного клинкера

Обратить внимание:


- Гидросиликаты кальция образуются в виде тонкозернистой массы вблизи исходных частиц С₃S
- Портландит (Ca(OH)₂) кристаллизуется из раствора с образованием крупных табличатых или гексагональных кристаллов
- С течением времени происходит перекристаллизация ГСК с повышением их основности и растворением образовавшихся ранее кристаллов Ca(OH)₂




Гидратация С₃А в отсутствии гипса


Обратить внимание:

- Первичные гексагональные частицы гидроалюминатов образуются на поверхности частиц С₃А (в случае крупных частиц С₃А более 50 60 мкм) или в объеме раствора (в случае мелких частиц С₃А);
- Первичные гексагональные частицы гидроалюминатов кальция представляют собой твердый раствор С₄АН₁₃₋₁₉ и С₂АН₈
- С течением времени гексагональные гидроалюминаты кальция переходят в кубический гидроалюминат кальция С₃АН₆. При повышении температуры скорость процесса перехода увеличивается

