Голосовой интерфейс

Ст. ИС-21 ИПСА Рябченко Алена Александровна

Интерфейс это...

В области информационных технологий (ИТ) средства взаимодействия пользователя с технической системой принято называть интерфейсом.

Одной из важнейших задач разработки современных технических систем является обеспечение наиболее интуитивного и естественного интерфейса с пользователем, то есть современные компьютерные приложения ориентированные на

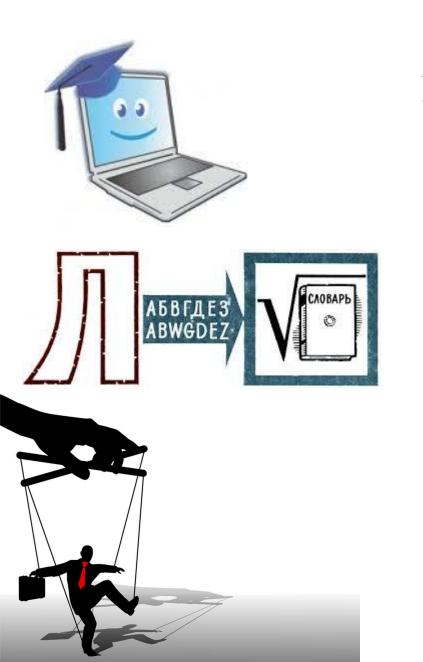
пользователя.

Типы интерфейсов

По наличию тех или иных средств ввода, интерфейсы разделяются на типы:

1. голосовой,

2. жестовый,


3. возможны смешанные варианты.

Одной из естественных форм взаимодействия для человека является **речь**. Голосовой интерфейс может улучшить существующий пользовательский интерфейс - он обеспечивает более удобный и менее ограниченный способ взаимодействия человека с компьютером.

Разработка голосового интерфейса является достаточно сложной и комплексной, и требует от разработчика знаний в различных предметных областях, таких как компьютерные науки, лингвистика и психология поведения человека.

Преимущества голосового интерфейса:

- оперативность и естественность;
- минимум специальной подготовки
- возможность управления объектом в темноте, за пределами его визуальной видимости (в частности, с использованием существующей телефонной сети);
- возможность использования одновременно ручного (с помощью клавиатуры) и голосового ввода информации;
- обеспечение мобильности оператора при управлении.

Распознавание речи

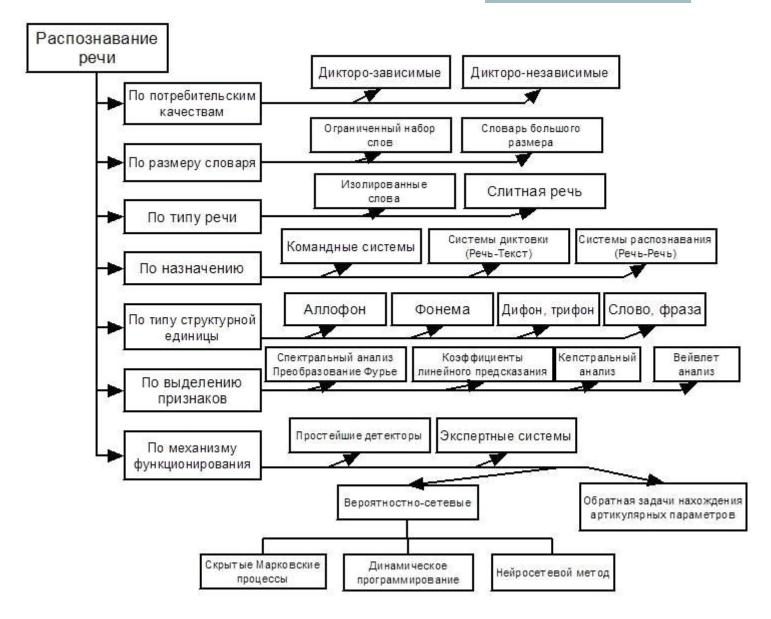
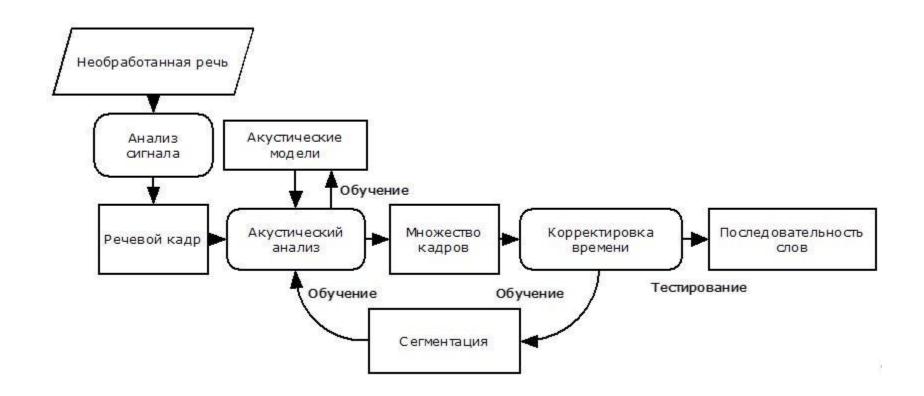
Распознавание речи -

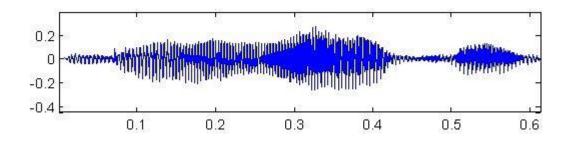
технология, позволяющая использовать естественный для человека речевой интерфейс для взаимодействия с электронной техникой.

Сложность распознавание речи состоит в том, что совокупность таких характеристик голоса и речи как тембр, громкость, высота, темп, интонация, качество дикции делают речь каждого человека по-своему неповторимой и уникальной как отпечатки пальцев.

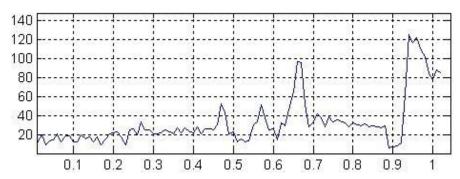
Системы распознавания речи

Системы распознавания речи - это системы, анализирующие акустический сигнал алгоритмами, основанными на разнообразных теориях, предполагающих, какие характеристики речевого сигнала создают ощущения звуков данного языка, и математических методах, с той или иной точностью выделяющих значащие параметры акустического сигнала и преобразующие его в различной полноте в необходимую форму.

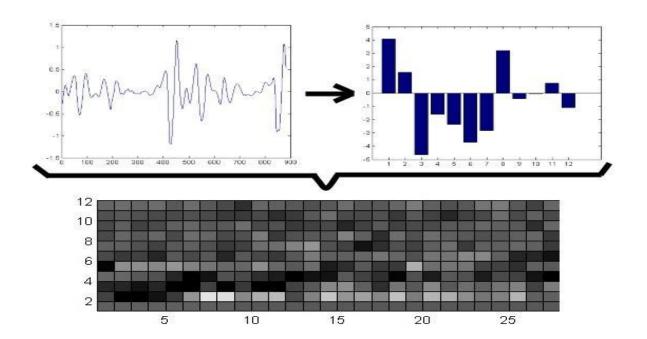




Рис.1 Классификация систем распознавания речи

Структура стандартной системы распознавания речи


Необработанная речь

Обычно, поток звуковых данных, записанный с высокой дискретизацией (20 КГц при записи с микрофона либо 8 КГц при записи с телефонной линии).


Анализ сигнала

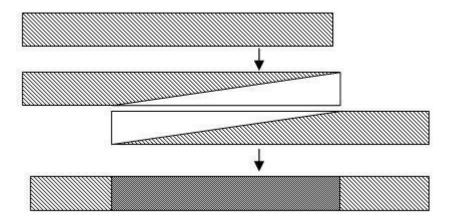
- Поступающий сигнал должен быть изначально трансформирован и сжат, для облегчения последующей обработки. Есть различные методы для извлечения полезных параметров и сжатия исходных данных в десятки раз без потери полезной информации. Наиболее используемые методы:
- анализ Фурье;
- линейное предсказание речи;
- кепстральный анализ.

Речевые кадры

Результатом анализа сигнала является последовательность речевых кадров. Обычно, каждый речевой кадр — это результат анализа сигнала на небольшом отрезке времени (порядка 10 мс.), содержащий информацию об этом участке (порядка 20 коэффициентов).

Акустические модели

- Для анализа состава речевых кадров требуется набор акустических моделей. Рассмотрим две наиболее распространенные из них.
 - Шаблонная модель. В качестве акустической модели выступает каким-либо образом сохраненный пример распознаваемой структурной единицы (слова, команды).
 - Модель состояний. Каждое слово моделируется как последовательность состояний указывающих набор звуков, которые возможно услышать в данном участке слова, основываясь на вероятностных правилах.


Акустический анализ

Состоит в <u>сопоставлении</u> различных акустических моделей к каждому кадру речи и <u>выдает матрицу</u> сопоставления последовательности кадров и множества акустических моделей.

Корректировка времени

Используется для обработки временной вариативности, возникающей при произношении слов (например, "растягивание" или "съедание" звуков).

Последовательность слов

<u>В результате</u> работы, система распознавания речи <u>выдает последовательность</u> (или несколько возможных последовательностей) <u>слов</u>, которая, наиболее вероятно, соответствует входному потоку речи.

Программная реализация голосового интерфейса

Используем:

- 1) JDK 6 (J2SE)
- 2) Eclipse SDK
- 3) Sphinx 4.0
- 4) JSAPI (Included in Sphinx 4.0)

Sphinx-4

- Sphinx-4 самый известное и наиболее работоспособное из открытых программных продуктов для распознавания речи на сегодняшний день.
- Структура Sphinx-4 была разработана с высокой степенью гибкости и модульности. На рисунке показана общая архитектура системы. Каждый помеченный элемент на рисунке представляет собой модуль, который может быть легко заменен.

Структура Sphinx-4

<u>Главными блоками</u> <u>являются:</u>

- 1. предварительный анализ,
- 2. декодер,
- 3. лингвистический модуль.

- 1. Акустическая модель преобразует звук в фонемы
- 2. Словарь пребразует фонемы в слова
- 3. Языковая модель помогает построить предложения исходя из порядка слов

Все три составляющие обезательные, но вместо языковой модели возможно просто описать порядок слов в jsgf словаре примерно так:

camera.jsgf

Голосовой калькулятор

Міп количество информации:

- 1. Поле (A) 1 символ;
- 2. Поле «В» -1 символ;
- 3. Кнопка «+» или «-».

Вводить информацию можно с помощью:

- 1. Мышки и клавиатуры;
- 2. Только клавиатуры, используя клавишу «Tab» для перехода между полями;
- 3. Голосовые команды.

Оценка эффективности

- Оценку эффективности и продуктивности интерфейса человека с системой, который реализован в виде компьютерной программы можно сделать с помощью оценки времени выполнения операций для достижения целей пользователя.
- Математическая модель для оценки временных параметров интерфейсов позволяет прогнозировать время выполнения какой-либо задачи пользователем.

В методике GOMS (the model of goals, objects, methods, and selection rules) расчёт эффективности основывается на понятии ментальных операций и их последовательной расстановке.

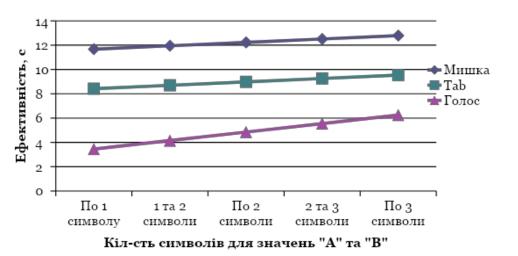
Использованы следующие обозначения:

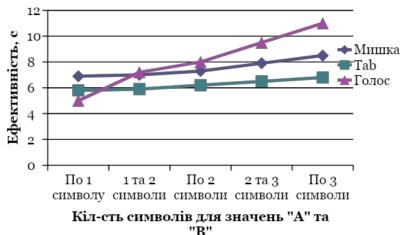
- Н(перемещение)=0,4(с),
- М (ментальная подготовка)=1,35(c),
- К(нажатие клавиши)=0,28(c),
- Р(указание)=1,1(с).

Пример расчет эффективности по методике GOMS

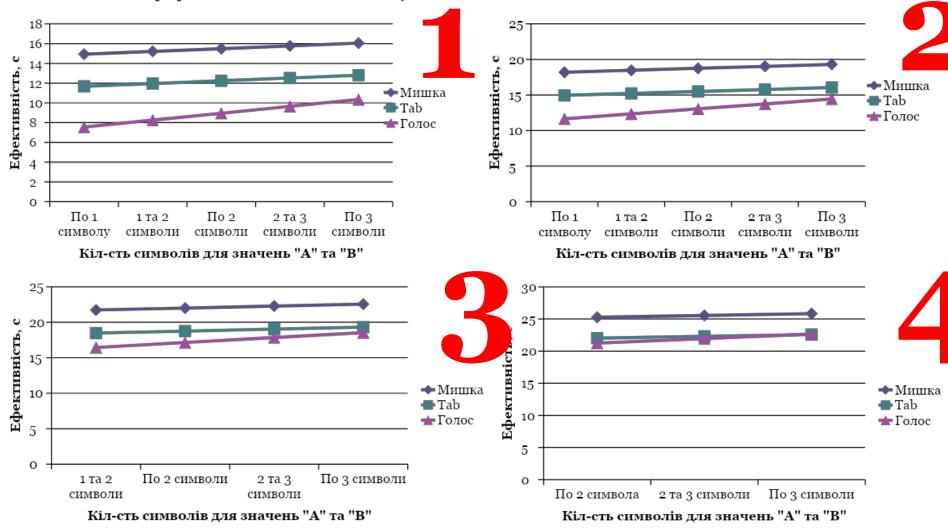
Используем мышку и клавиатуру, введенные данные без ошибок, значения «А» и «В» по 1 символу: НКНРКНКНРК => НМКНМРКНМКНМРМК

4*0,4+5*1,35+4*0,28+2*1,1=11,67(с). С увеличением количества символов, скорость интерфейса будет снижатся на количество дополнительных п кликов, то есть на n*0,28с.

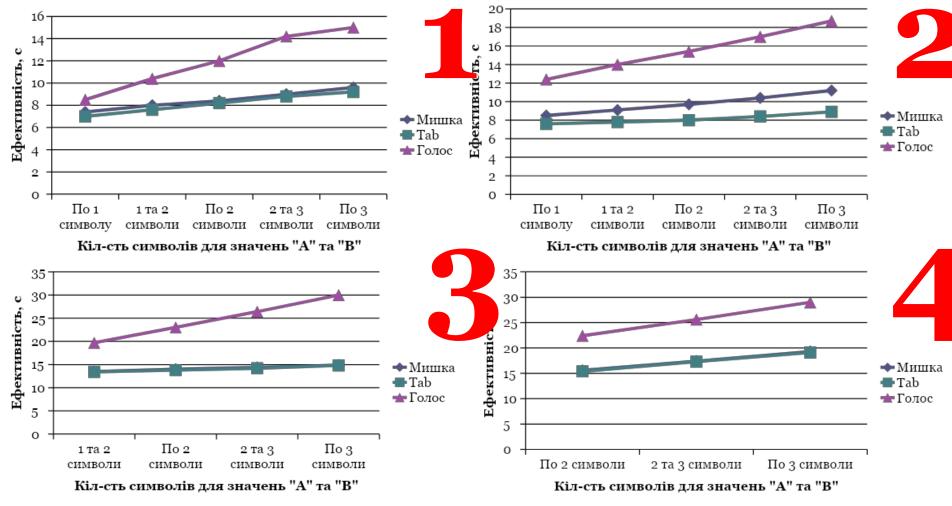

Эффективность интерфейсов, если нет ошибок


Методика GOMS

Кіл-ть символів для	Ефективність, с		
значень «А» та «В»	Мишка	«Tab»	Голос
По 1 символу	11,67	8,42	3,45
1 та 2 символи	11,95	8,7	4,15
По 2 символи	12,23	8,98	4,85
2 та 3 символи	12,51	9,26	5,55
По 3 символи	12,79	9,54	6,25


Экспериментальный метод

Кіл-ть символів для	Ефективність, с		
значень «А» та «В»	Мишка	«Tab»	Голос
По 1 символу	6,9	5,8	5
1 та 2 символи	7	5,9	7,2
По 2 символи	7,3	6,2	8
2 та 3 символи	7,9	6,5	9,5
По 3 символи	8,5	6,8	11



Эффективность интерфейсов по методике GOMS, если есть 1-4 ошибки

Эффективность интерфейсов (экспериментальный метод), если есть 1-4 ошибки

Вывод

Смешанный тип интерфейса наиболее эффективный для использования в программных приложениях.

Спасибо за внимание!

