Image Stitching

Ali Farhadi CSE 455

Several slides from Rick Szeliski, Steve Seitz, Derek Hoiem, and Ira Kemelmacher

• Combine two or more overlapping images to make one larger image

Slide credit: Vaibhav Vaish

How to do it?

- Basic Procedure
	- 1. Take a sequence of images from the same position
		- 1. Rotate the camera about its optical center
	- 2. Compute transformation between second image and first
	- 3. Shift the second image to overlap with the first
	- 4. Blend the two together to create a mosaic
	- 5. If there are more images, repeat

1. Take a sequence of images from the same position

• Rotate the camera about its optical center

2. Compute transformation between images

- Extract interest points
- Find Matches
- Compute transformation ?

3. Shift the images to overlap

4. Blend the two together to create a mosaic

5. Repeat for all images

How to do it?

- Basic Procedure
- 1. Take a sequence of images from the same position ✓
	- 1. Rotate the camera about its optical center
	- 2. Compute transformation between second image and first
	- 3. Shift the second image to overlap with the first
	- 4. Blend the two together to create a mosaic
	- 5. If there are more images, repeat

Compute Transformations

- Extract interest points ✓
- ✔ Find good matches
	- Compute transformation

Let's assume we are given a set of good matching interest points

Image reprojection

- The mosaic has a natural interpretation in 3D
	- The images are reprojected onto a common plane
	- The mosaic is formed on this plane

Example

Image reprojection

– Rather than thinking of this as a 3D reprojection, think of it as a 2D image warp from one image to another

Motion models

- What happens when we take two images with a camera and try to align them?
- translation?
- rotation?
- scale?
- affine?
- Perspective?

Recall: Projective transformations

• (aka *homographies*)

$$
\begin{bmatrix} a & b & c \\ d & e & f \\ g & h & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} u \\ v \\ w \end{bmatrix} \qquad x' = u/w \\ y' = v/w
$$

Parametric (global) warping

• Examples of parametric warps:

translation rotation relation aspect

affine

perspective

2D coordinate transformations

- translation: $x' = x + t$ $x = (x, y)$
- rotation: $x' = R x + t$
- similarity: *x'* **=** *s R x + t*
- affine: $x' = A x + t$
- perspective: $x' \triangleq H x$ $x = (x, y, 1)$ (*x* is a *homogeneous* coordinate)

Image Warping

• Given a coordinate transform *x'* = *h*(*x*) and a source image *f*(*x*), how do we compute a transformed image $g(x') = f(h(x))$?

Forward Warping

- Send each pixel *f*(*x*) to its corresponding location $x' = h(x)$ in $g(x')$
	- What if pixel lands "between" two pixels?

Forward Warping

- Send each pixel *f*(*x*) to its corresponding location $x' = h(x)$ in $g(x')$
	- What if pixel lands "between" two pixels?
	- Answer: add "contribution" to several pixels, normalize later (*splatting*)

Inverse Warping

- Get each pixel *g*(*x'*) from its corresponding location $x' = h(x)$ in $f(x)$
	- What if pixel comes from "between" two pixels?

Inverse Warping

- Get each pixel *g*(*x'*) from its corresponding location $x' = h(x)$ in $f(x)$
	- What if pixel comes from "between" two pixels?
	- Answer: *resample* color value from *interpolated* source image

Interpolation

- Possible interpolation filters:
	- nearest neighbor
	- bilinear
	- bicubic (interpolating)

Motion models

Translation

2 unknowns

6 unknowns

8 unknowns

Finding the transformation

- Translation = 2 degrees of freedom
- Similarity = 4 degrees of freedom
- Affine $= 6$ degrees of freedom
- Homography = 8 degrees of freedom

• How many corresponding points do we need to solve?

Plane perspective mosaics

- 8-parameter generalization of affine motion
	- works for pure rotation or planar surfaces
- Limitations:
	- local minima
	- slow convergence
	- difficult to control interactively

Simple case: translations

How do we solve for $(\mathbf{x}_t, \mathbf{y}_t)$?

 $(\mathbf{x}_t, \mathbf{y}_t)$

$$
\begin{aligned}\n\text{Displacement of match } i &= \left(\mathbf{x}'_i - \mathbf{x}_i, \mathbf{y}'_i - \mathbf{y}_i \right) \\
\left(\mathbf{x}_t, \mathbf{v}_t \right) &= \left(\frac{1}{n} \sum_{i=1}^n \mathbf{x}'_i - \mathbf{x}_t, \frac{1}{n} \sum_{i=1}^n \mathbf{y}'_i - \mathbf{v}_t \right)\n\end{aligned}
$$

$$
(\mathbf{x}_t, \mathbf{y}_t) = \left(\frac{1}{n} \sum_{i=1}^n \mathbf{x}'_i - \mathbf{x}_i, \frac{1}{n} \sum_{i=1}^n \mathbf{y}'_i - \mathbf{y}_i\right)
$$

$$
\begin{array}{rcl}\n\mathbf{x}_i + \mathbf{x}_t & = & \mathbf{x}'_i \\
\mathbf{y}_i + \mathbf{y}_t & = & \mathbf{y}'_i\n\end{array}
$$

- System of linear equations
	- What are the knowns? Unknowns?
	- How many unknowns? How many equations (per match)?

$$
\begin{array}{rcl}\n\mathbf{x}_i + \mathbf{x_t} &=& \mathbf{x}'_i \\
\mathbf{y}_i + \mathbf{y_t} &=& \mathbf{y}'_i\n\end{array}
$$

- Problem: more equations than unknowns
	- "Overdetermined" system of equations
	- We will find the *least squares* solution

Least squares formulation

• For each point $(\mathbf{x}_i, \mathbf{y}_i)$

$$
\begin{array}{rcl}\n\mathbf{x}_i + \mathbf{x_t} &=& \mathbf{x}'_i \\
\mathbf{y}_i + \mathbf{y_t} &=& \mathbf{y}'_i\n\end{array}
$$

• we define the *residuals* as

$$
r_{\mathbf{x}_i}(\mathbf{x}_t) = (\mathbf{x}_i + \mathbf{x}_t) - \mathbf{x}'_i
$$

$$
r_{\mathbf{y}_i}(\mathbf{y}_t) = (\mathbf{y}_i + \mathbf{y}_t) - \mathbf{y}'_i
$$

Least squares formulation

• Goal: minimize sum of squared residuals \boldsymbol{n} $C(\mathbf{x}_t, \mathbf{y}_t) = \sum (r_{\mathbf{x}_i}(\mathbf{x}_t)^2 + r_{\mathbf{y}_i}(\mathbf{y}_t)^2)$ $i=1$

- "Least squares" solution
- For translations, is equal to mean displacement

Least squares

$At = b$

• Find **t** that minimizes

$$
||\mathbf{At}-\mathbf{b}||^2
$$

• To solve, form the *normal equations*

$$
\mathbf{A}^{\mathrm{T}} \mathbf{A} \mathbf{t} = \mathbf{A}^{\mathrm{T}} \mathbf{b}
$$

$$
\mathbf{t} = \left(\mathbf{A}^{\mathrm{T}} \mathbf{A} \right)^{-1} \mathbf{A}^{\mathrm{T}} \mathbf{b}
$$

Solving for translations

• Using least squares

 $\left[\begin{array}{cc} 1 & 0 \\ 0 & 1 \\ 1 & 0 \\ 0 & 1 \\ \vdots \\ 1 & 0 \\ 0 & 1 \end{array}\right] \left[\begin{array}{c} x_1' - x_1 \\ y_1' - y_1 \\ x_2' - x_2 \\ y_2' - y_2 \\ \vdots \\ x_n' - x_n \\ y_n' - y_n \end{array}\right]$ 2 x 2*n* x 2*n* x \sim 1 \blacktriangleleft

Affine transformations

$$
\left[\begin{array}{c}x'\\y'\\1\end{array}\right]=\left[\begin{array}{ccc}a&b&c\\d&e&f\\0&0&1\end{array}\right]\left[\begin{array}{c}x\\y\\1\end{array}\right]
$$

- How many unknowns?
- How many equations per match?
- How many matches do we need?

Affine transformations

• Residuals:

 $r_{x_i}(a, b, c, d, e, f) = (ax_i + by_i + c) - x'_i$ $r_{y_i}(a, b, c, d, e, f) = (dx_i + ey_i + f) - y'_i$

• Cost function:

$$
C(a, b, c, d, e, f) =
$$

$$
\sum_{i=1}^{n} (r_{x_i}(a, b, c, d, e, f)^2 + r_{y_i}(a, b, c, d, e, f)^2)
$$

Affine transformations

• Matrix form

Solving for homographies

$$
\begin{bmatrix} x'_i \\ y'_i \\ 1 \end{bmatrix} \cong \begin{bmatrix} h_{00} & h_{01} & h_{02} \\ h_{10} & h_{11} & h_{12} \\ h_{20} & h_{21} & h_{22} \end{bmatrix} \begin{bmatrix} x_i \\ y_i \\ 1 \end{bmatrix}
$$

$$
x'_{i} = \frac{h_{00}x_{i} + h_{01}y_{i} + h_{02}}{h_{20}x_{i} + h_{21}y_{i} + h_{22}}
$$

$$
y'_{i} = \frac{h_{10}x_{i} + h_{11}y_{i} + h_{12}}{h_{20}x_{i} + h_{21}y_{i} + h_{22}}
$$

 $x'_i(h_{20}x_i + h_{21}y_i + h_{22}) = h_{00}x_i + h_{01}y_i + h_{02}$ $y'_i(h_{20}x_i + h_{21}y_i + h_{22}) = h_{10}x_i + h_{11}y_i + h_{12}$

Solving for homographies

 $x'_i(h_{20}x_i + h_{21}y_i + h_{22}) = h_{00}x_i + h_{01}y_i + h_{02}$ $y'_i(h_{20}x_i + h_{21}y_i + h_{22}) = h_{10}x_i + h_{11}y_i + h_{12}$

Direct Linear Transforms

minimize $||Ah - 0||^2$ Defines a least squares problem:

- Since \mathbf{h} is only defined up to scale, solve for unit vector $\hat{\mathbf{h}}$
- Solution: $\hat{\mathbf{h}}$ = eigenvector of $\mathbf{A}^T \mathbf{A}$ with smallest eigenvalue
- Works with 4 or more points

Matching features

RAndom SAmple Consensus

RAndom SAmple Consensus

Least squares fit

RANSAC for estimating homography

- RANSAC loop:
- Select four feature pairs (at random)
- 2. Compute homography *H* (exact)
- 3. Compute inliers where $||p_i$ ², $H[p_i|| < \varepsilon]$
	- Keep largest set of inliers
	- Re-compute least-squares *H* estimate using all of the inliers

• Rather than homography H (8 numbers) fit y=ax+b (2 numbers a, b) to 2D pairs

- Pick 2 points
- Fit line
- Count inliers

- Pick 2 points
- Fit line
- Count inliers

- Pick 2 points
- Fit line
- Count inliers

5 1

- Pick 2 points
- Fit line
- Count inliers

- Use biggest set of inliers
- Do least-square fit

RANSAC

Red:

rejected by 2nd nearest neighbor criterion Blue:

Ransac outliers Yellow:

inliers

How many rounds?

- If we have to choose *s* samples each time
	- with an outlier ratio *e*

e.g. for p

– and we want the right answer with probability *p*

For probability p of no outliers:

 $N = \log(1-p)/\log(1-(1-\epsilon)^s)$

- \bullet N, number of samples
- \bullet s, size of sample set
- \bullet ϵ , proportion of outliers

Rotational mosaics

- Directly optimize rotation and focal length
- Advantages:
	- ability to build full-view panoramas
	- easier to control interactively
	- more stable and accurate estimates

Rotational mosaic

- Projection equations
- 1. Project from image to 3D ray

•
$$
(x_0, y_0, z_0) = (u_0 - u_c, v_0 - v_c)
$$

2. Rotate the ray by camera motion

•
$$
(x_1, y_1, z_1) = \mathbf{R}_{01} (x_0, y_0, z_0)
$$

3. Project back into new (source) image

•
$$
(u_1, v_1) = (fx_1/z_1 + u_cfy_1/z_1 + v_c)
$$

Computing homography

• Assume we have four matched points: How do we compute homography **H**?

Normalized DLT

- 1. Normalize coordinates for each image
	- a) Translate for zero mean
	- b) Scale so that average distance to origin is ``sqrt(2)

$$
\widetilde{\mathbf{x}} = \mathbf{T} \mathbf{x} \qquad \widetilde{\mathbf{x}}' = \mathbf{T}' \mathbf{x}'
$$

— This makes problem better behaved numerically

- 3. Compute $\widetilde{\mathbf{H}}$ using DLT in normalized coordinates
- 4. Unnormalize:

$$
\mathbf{H} = \mathbf{T}'^{-1} \widetilde{\mathbf{H}} \mathbf{T}
$$

$$
\mathbf{x}'_i = \mathbf{H}\mathbf{x}_i
$$

Computing homography

• Assume we have matched points with outliers: How do we compute homography **H**?

Automatic Homography Estimation with RANSAC

- 1. Choose number of samples *N*
- 2. Choose 4 random potential matches
- 3. Compute **H** using normalized DLT
- 4. Project points from **x** to **x**' for each potentially matching pair: $\mathbf{x}'_i = \mathbf{H}\mathbf{x}_i$
- 5. Count points with projected distance < t
	- E.g., $t = 3$ pixels
- 6. Repeat steps 2-5 *N* times
	- Choose **H** with most inliers

Automatic Image Stitching

- 1. Compute interest points on each image
- 1. Find candidate matches
- 1. Estimate homography **H** using matched points and RANSAC with normalized DLT
- 1. Project each image onto the same surface and blend

RANSAC for Homography

Initial Matched Points

RANSAC for Homography

Final Matched Points

RANSAC for Homography

