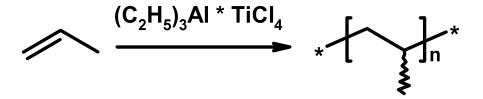


$$AIH_3 + C_2H_4 \longrightarrow AI(C_2H_5)_3$$

AIH₃ + (m+n+o)
$$C_2H_4$$
 100 atm C_2H_4 100 atm C_2H_4)m-H C_2H_4)n-H C_2H_4)o-H

$$O_2$$
, H_2O
 \longrightarrow AI(OH)₃ + HO-(C_2H_4)m-H + HO-(C_2H_4)n-H + HO-(C_2H_4)o-H


Карл Циглер (1898 - 1973)

$$(C_2H_5)_3AI * TiCl_4$$

H₂C=CH₂
$$\xrightarrow{\text{EtAICI/TiCI}_4}$$
 $\xrightarrow{\text{1-5 atm, 23 - 60 °C}}$ $\xrightarrow{\text{TIH}}$ $\xrightarrow{\text{TIH}}$

Джулио Натта (1903 - 1979)

Полученный полипропилен имел высокую степень стереорегулярности и кристалличности

1963 год, К. Циглер и Дж. Натта – Нобелевская премия

«За вклад в открытие и развитие фундаментальных методов синтеза органических макромолекул из простых ненасыщенных углеводородов с помощью каталитической полимеризации»

Полимеризация виниловых мономеров при каталитическом участии комплексов металлоорганических соединений I – III групп периодической системы с соединениями переходных металлов IV – VII групп

Катализаторы Циглера-Натта

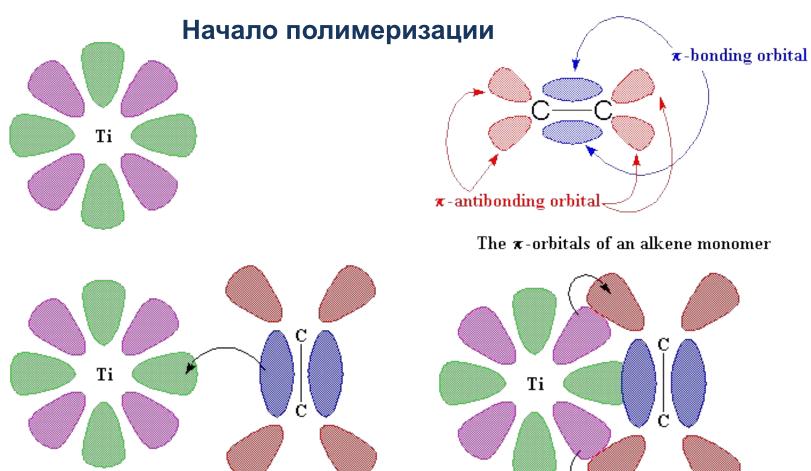
Катализаторы Циглера-Натта

- \Box 1 поколения: TiCl₃ + AlR₃
- □ 2 поколения: TiCl₃ + AlR₃ + кислота Льюиса
- \square 3 поколения (на носителях): $TiCl_3 + AlR_3 + MgCl_2$

гомогенные катализаторы Циглера-

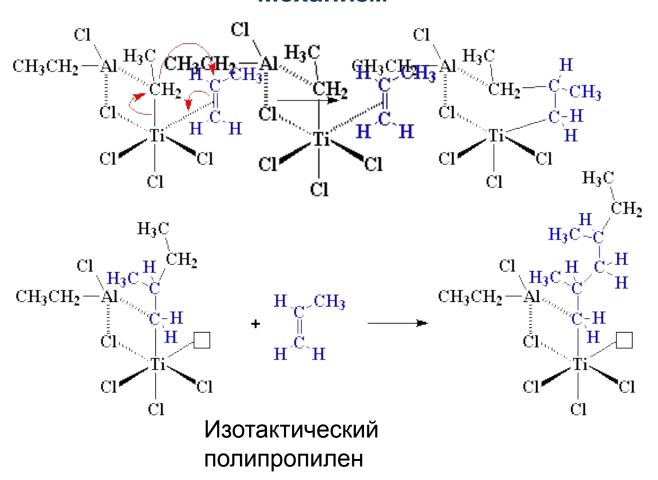
Натта:

 $VCI_4 - AI(C_6H_{13})_3$


 $VOCI_3 - AI(C_2H_5)_2CI$

 $Cp_2Ti(CH_3)_2 - AIR_3$

 $Cp_2Met(CH_3)_2 - [Al(CH_3)-O]_X$


Особенность строения катализатора Циглера - Натта

Осоденность строения катализатора Циглера - Натта

Полимеризация

Механизм

Полимеризация

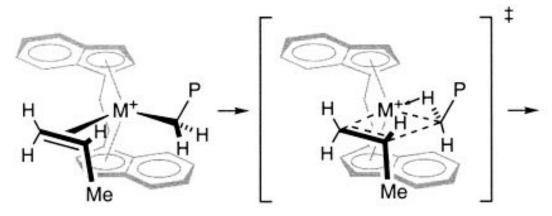
Механизм

$$\begin{array}{c} H_3C \\ H_3C \\ H_4C \\ CH_2 \\ CH_2 \\ CH_3 \\ CH_3 \\ CH_3 \\ CH_2 \\ CH_3 \\ CH_4 \\ CH_3 \\ CH_3 \\ CH_4 \\ CH_5 \\ CH$$

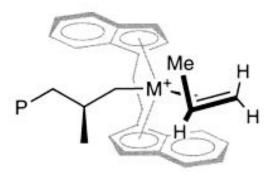
Полимеризация

Механизм

Синдиотактический полипропилен

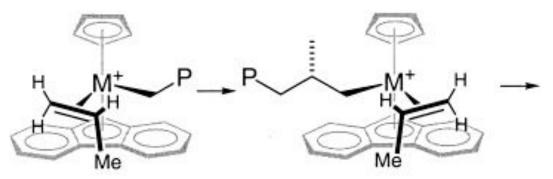

Гомогенные катализаторы Циглера-Натта

Металлоценовые

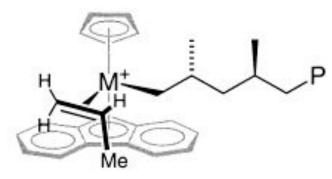

$$\begin{array}{c} \text{Cp, Met} \\ \text{Cp} & \text{Cl} \end{array} \xrightarrow{\text{Al(C}_2 \text{H}_5)\text{Cl}_2} \xrightarrow{\text{Cp, Met}} \xrightarrow{\text{Cl}_2 \text{H}_5} \xrightarrow{\text{Al(C}_2 \text{H}_5)\text{Cl}_2} \xrightarrow{\text{Cp, Met}} \xrightarrow{\text{Cl}_2 \text{H}_5} \xrightarrow{\text{Cl}} \xrightarrow{\text{Cl}_2 \text{H}_5} \xrightarrow{\text{Cl}_3} \xrightarrow{\text{Cl}_4 \text{Cp, Met}} \xrightarrow{\text{Cl}_5 \text{Cl}_5} \xrightarrow{\text{Cl$$

Гомогенные катализаторы Циглера-Натта

Металлоценовые



Изотактический полипропилен



Гомогенные катализаторы Циглера-Натта

Металлоценовые

Синдиотактичный полипропилен

Кинетика координационноионной полимеризации

В присутствии гетерогенного катализа

Стадии процесса полимеризации:

□ Инициирование

$$Ti-R + \longrightarrow \begin{pmatrix} k_1 \\ \hline \end{pmatrix}$$

□ Рост

Ti
$$R$$
 + (n-1) R

□ Передача цепи на мономер

□ Передача цепи на триалкилалюминий

$$Ti + AIR_3 \xrightarrow{k_4} Ti - R + R_2AI \xrightarrow{R_2AI} R$$

Кинетика координационноионной полимеризации

В присутствии гетерогенного катализа

Общей чертой гетерогенной координационно-ионной полимеризации является линейная зависимость от площади поверхности катализатора

$$\mathbf{v}_2 = \mathbf{k}_2 \times [\mathbf{M}] \times [\mathbf{I}]_0$$

 $\left[I \right]_0$ зависит от количества адсорбированного на поверхности

триалкилалюминия у монрмера, тор
$$\times S$$

Экспериментально:
$$\mathbf{v}_2 = \mathbf{k}_2 \times \mathbf{Q}_{\mathbf{M}} \times$$

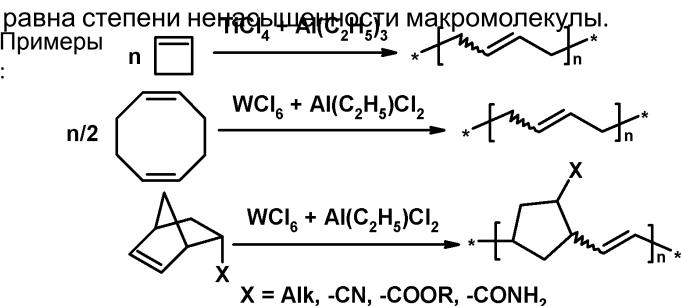
Полимеры характеризуются широким молекулярномассовым распределением

Кинетика координационноионной полимеризации

В присутствии гомогенного катализа

Схема образование полимера на комплексах Ti(IV) и Zr(IV)

С метилалюминоксанам имеед вид:
$$\begin{bmatrix} \mathbf{R1} & \mathbf{R1} & \mathbf{R1} \\ \mathbf{RI} & \mathbf{RI} & \mathbf{RI} \end{bmatrix} \begin{bmatrix} \mathbf{RI} & \mathbf{RI} & \mathbf{RI} \\ \mathbf{RI} & \mathbf{RI} & \mathbf{RI} \end{bmatrix} \begin{bmatrix} \mathbf{RI} & \mathbf{RI} & \mathbf{RI} \\ \mathbf{RI} & \mathbf{RI} & \mathbf{RI} \end{bmatrix} \begin{bmatrix} \mathbf{RI} & \mathbf{RI} & \mathbf{RI} \\ \mathbf{RI} & \mathbf{RI} & \mathbf{RI} \end{bmatrix} \begin{bmatrix} \mathbf{RI} & \mathbf{RI} & \mathbf{RI} \\ \mathbf{RI} & \mathbf{RI} & \mathbf{RI} \end{bmatrix} \begin{bmatrix} \mathbf{RI} & \mathbf{RI} & \mathbf{RI} \\ \mathbf{RI} & \mathbf{RI} & \mathbf{RI} \end{bmatrix} \begin{bmatrix} \mathbf{RI} & \mathbf{RI} & \mathbf{RI} \\ \mathbf{RI} & \mathbf{RI} & \mathbf{RI} \end{bmatrix} \begin{bmatrix} \mathbf{RI} & \mathbf{RI} & \mathbf{RI} \\ \mathbf{RI} & \mathbf{RI} & \mathbf{RI} \end{bmatrix} \begin{bmatrix} \mathbf{RI} & \mathbf{RI} & \mathbf{RI} \\ \mathbf{RI} & \mathbf{RI} & \mathbf{RI} \end{bmatrix} \begin{bmatrix} \mathbf{RI} & \mathbf{RI} & \mathbf{RI} \\ \mathbf{RI} & \mathbf{RI} & \mathbf{RI} \end{bmatrix} \begin{bmatrix} \mathbf{RI} & \mathbf{RI} & \mathbf{RI} \\ \mathbf{RI} & \mathbf{RI} & \mathbf{RI} \end{bmatrix} \begin{bmatrix} \mathbf{RI} & \mathbf{RI} & \mathbf{RI} \\ \mathbf{RI} & \mathbf{RI} & \mathbf{RI} \end{bmatrix} \begin{bmatrix} \mathbf{RI} & \mathbf{RI} & \mathbf{RI} \\ \mathbf{RI} & \mathbf{RI} & \mathbf{RI} \end{bmatrix} \begin{bmatrix} \mathbf{RI} & \mathbf{RI} & \mathbf{RI} \\ \mathbf{RI} & \mathbf{RI} & \mathbf{RI} \end{bmatrix} \begin{bmatrix} \mathbf{RI} & \mathbf{RI} & \mathbf{RI} \\ \mathbf{RI} & \mathbf{RI} & \mathbf{RI} \end{bmatrix} \begin{bmatrix} \mathbf{RI} & \mathbf{RI} & \mathbf{RI} \\ \mathbf{RI} & \mathbf{RI} & \mathbf{RI} \end{bmatrix} \begin{bmatrix} \mathbf{RI} & \mathbf{RI} & \mathbf{RI} \\ \mathbf{RI} & \mathbf{RI} & \mathbf{RI} \end{bmatrix} \begin{bmatrix} \mathbf{RI} & \mathbf{RI} & \mathbf{RI} \\ \mathbf{RI} & \mathbf{RI} & \mathbf{RI} \end{bmatrix} \begin{bmatrix} \mathbf{RI} & \mathbf{RI} & \mathbf{RI} \\ \mathbf{RI} & \mathbf{RI} & \mathbf{RI} \end{bmatrix} \begin{bmatrix} \mathbf{RI} & \mathbf{RI} & \mathbf{RI} \\ \mathbf{RI} & \mathbf{RI} & \mathbf{RI} \end{bmatrix} \begin{bmatrix} \mathbf{RI} & \mathbf{RI} & \mathbf{RI} \\ \mathbf{RI} & \mathbf{RI} & \mathbf{RI} \end{bmatrix} \begin{bmatrix} \mathbf{RI} & \mathbf{RI} & \mathbf{RI} \\ \mathbf{RI} & \mathbf{RI} & \mathbf{RI} \end{bmatrix} \begin{bmatrix} \mathbf{RI} & \mathbf{RI} & \mathbf{RI} \\ \mathbf{RI} & \mathbf{RI} & \mathbf{RI} \end{bmatrix} \begin{bmatrix} \mathbf{RI} & \mathbf{RI} & \mathbf{RI} \\ \mathbf{RI} & \mathbf{RI} & \mathbf{RI} \end{bmatrix} \begin{bmatrix} \mathbf{RI} & \mathbf{RI} & \mathbf{RI} \\ \mathbf{RI} & \mathbf{RI} & \mathbf{RI} \end{bmatrix} \begin{bmatrix} \mathbf{RI} & \mathbf{RI} & \mathbf{RI} \\ \mathbf{RI} & \mathbf{RI} & \mathbf{RI} \end{bmatrix} \begin{bmatrix} \mathbf{RI} & \mathbf{RI} & \mathbf{RI} \\ \mathbf{RI} & \mathbf{RI} & \mathbf{RI} \end{bmatrix} \begin{bmatrix} \mathbf{RI} & \mathbf{RI} & \mathbf{RI} \\ \mathbf{RI} & \mathbf{RI} & \mathbf{RI} \end{bmatrix} \begin{bmatrix} \mathbf{RI} & \mathbf{RI} & \mathbf{RI} \\ \mathbf{RI} & \mathbf{RI} & \mathbf{RI} \end{bmatrix} \begin{bmatrix} \mathbf{RI} & \mathbf{RI} & \mathbf{RI} \\ \mathbf{RI} & \mathbf{RI} & \mathbf{RI} \end{bmatrix} \begin{bmatrix} \mathbf{RI} & \mathbf{RI} & \mathbf{RI} \\ \mathbf{RI} & \mathbf{RI} & \mathbf{RI} \end{bmatrix} \begin{bmatrix} \mathbf{RI} & \mathbf{RI} & \mathbf{RI} \\ \mathbf{RI} & \mathbf{RI} \end{bmatrix} \begin{bmatrix} \mathbf{RI} & \mathbf{RI} & \mathbf{RI} \\ \mathbf{RI} & \mathbf{RI} \end{bmatrix} \begin{bmatrix} \mathbf{RI} & \mathbf{RI} & \mathbf{RI} \\ \mathbf{RI} & \mathbf{RI} \end{bmatrix} \begin{bmatrix} \mathbf{RI} & \mathbf{RI} & \mathbf{RI} \\ \mathbf{RI} & \mathbf{RI} \end{bmatrix} \begin{bmatrix} \mathbf{RI} & \mathbf{RI} & \mathbf{RI} \\ \mathbf{RI} & \mathbf{RI} \end{bmatrix} \begin{bmatrix} \mathbf{RI} & \mathbf{RI} \\ \mathbf{RI} & \mathbf{RI} \end{bmatrix} \begin{bmatrix} \mathbf{RI} & \mathbf{RI} \\ \mathbf{RI} & \mathbf{RI} \end{bmatrix} \begin{bmatrix} \mathbf{RI} & \mathbf{RI} \\ \mathbf{RI} & \mathbf{RI} \end{bmatrix} \begin{bmatrix} \mathbf{RI} & \mathbf{RI} \\ \mathbf{RI} & \mathbf{RI} \end{bmatrix} \begin{bmatrix} \mathbf{RI} & \mathbf{RI} \\ \mathbf{RI} & \mathbf{RI} \end{bmatrix} \begin{bmatrix} \mathbf{RI} & \mathbf{RI} \\ \mathbf{RI} & \mathbf{RI} \end{bmatrix} \begin{bmatrix} \mathbf{RI} & \mathbf{RI} \\ \mathbf{RI} & \mathbf{RI} \end{bmatrix} \begin{bmatrix} \mathbf{RI} & \mathbf{R$$


Основная причина обрыва цепи – восстановление Тi(IV)до

Координационно-ионная полимеризации циклоалкенов

Общая схема

$$\begin{array}{c|c}
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\$$

<u>Преимущества</u> – суммарная степень ненасыщенности мономеров

Координационно-ионная полимеризации циклоалкенов

Механизм

В стадиях инициирования полимеризации в присутствии соединений переходных металлом берут участие металлкарбеновые соединения, которые образуют металлциклобутановые интермедиаты

Инициатор

Ы:

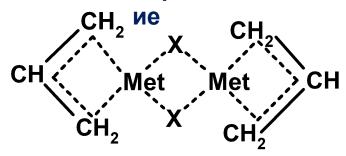
$$N_2$$
 OR + WXn \longrightarrow WXn \bigcirc OR + N_2

Ионно-координационная полимеризация полярных мономеров

На катализаторах Циглера-Натта акрилонитрил, винилацетат, винилхлорид, акрилаты и метакрилаты полимеризуются исключительно с образованием атактичных полимеров **ПОЧЕМУ**

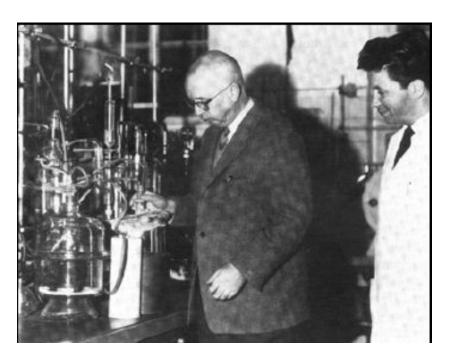
В подобном случае мономер может полимеризоваться в изотактичный или синдиотактичный полимер, если центр нуклеофильности стерически закрыт.

$$\begin{array}{c|c}
 & O \\
 & O \\$$


Полимеризация при инициировании π-аллильными комплексами переходных металлов

общая формула:

[CH₂=CH-CH₂MetX]₂


Met = Ni, Co, Cr; X = галоген

Строен

Полимеризация при инициировании π-аллильными комплексами переходных металлов

Карл Циглер последний Аlхимик, потому что «... он превратил алюминий в золото».