Слайд 1

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РФ Федеральное государственное бюджетное образовательное учреждение высшего образования «МОСКОВСКИЙ АВИАЦИОННЫЙ ИНСТИТУТ

(НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)»

Кафедра «Технология композиционных материалов, конструкций и микросистем»

«Разработка модели и исследование напряженно-деформированного состояния дискретно армированного стеклопластика на основе термопластичной матрицы»

Студент: Гапоненко И.В. Руководитель: Салиенко Н. В.

Москва, 2018

Цель работы: Разработка модели и исследование деформационнопрочностных свойств стеклопластика на основе термопластичной матрицы, армированной короткими стеклянными волокнами.

Задачи :

- Провести анализ литературных данных по материаловедческим основам создания дискретно армированных стеклопластиков. Рассмотреть термопластичные матрицы, стеклянные армирующие волокна, свойства термопластов, армированных короткими волокнами. Описать дефекты и их влияние на физико-механические характеристики стеклопластиков. Проанализировать аналитическое и численное моделирование деформационнопрочностных свойств дискретно-армированных ПКМ.
- Изготовить образцы стеклопластика на основе поликапроамидной матрицы и коротких стеклянных волокон. Провести экспериментальные испытания на растяжение и сдвиг по определению физико-механических свойств стеклопластика.
- Разработать физическую модель структуры ПКМ с дефектом на торцах армирующих волокон. Разработать КЭ-модель такого ПКМ и методик построения модели развития дефекта на границе раздела волокно-матрица в программном комплексе ANSYS.
- Провести анализ результатов аналитического, численного моделирования и экспериментальных данных.

Слайд 3

Раздел 1. Литературный обзор

1.1. Материаловедческие основы создания дискретно армированных стеклопластиков

Рис. 1. Схема распределения растягивающих напряжений о и напряжений сдвига т вдоль короткого волокна, находящегося в матрице.

- 1 матрица;
- 2 волокно;
- Р -приложенная нагрузка;
- L -длина волокна;
- $\sigma_{_{\rm B}}$ напряжение при разрыве волокна

Под ред. М.Ричардсона. Кн.: "Промышленные полимерные композиционные материалы". Перевод с англ. под ред. П.Г.Бабаевского.М., Химия,

1.1.1. Термопластичные матрицы (Продолжение Раздела 1)

Термопластичная матрица в ТПКМ:

- обеспечивает монолитность материала, прочную связь между армирующими элементами и их совместную работу при нагружении;
- лимитирует деформационную теплостойкость и термостойкость материала;
- вносит аддитивный вклад в эксплуатационные свойства материала;
- играет определяющую роль в выборе и реализации метода и условий формования элементов конструкций;
- обладают более низким по сравнению с реактопластами модулем упругости

1.1.2. Стеклянные армирующие волокна

(Продолжение Раздела 1)

Таблица 1. Физико-механические свойства различных волокон

8	Плотность	Предел прочности	Модуль	Удельная
Волокно	<u>г/см</u> ³	при растяжении	упругости	Прочность
		MПа	ГПа	м
Стеклянное	2,48	125—25	200—700	5 000-10 000
Крафтцеллюлозное	-	91	785	-
Вискозное вытянутое	-	7 5,6	86,9	-
Найлоновое	1,14	5 0,4	46	4 400
Хлопчатобумажное	1,54	4 7,6	77	3 080

Марка стеклянных нитей	Линейная плотность ,µ, текс	Разрывная нагрузка, Н	Диаметр филаменты d _{эл} ·10 ⁶ , м	Диапазон круток К _н , м ⁻¹	Р, кг/м ³	<u>σ, М</u> па	Е+, Гпа	ε ⁺ , %
БС 6-13×1	13	7,0		-		3000-		
БС 6-6,8×1×2	13,5	7,5	6			3500(1		
БС 6-13×1×2-78	26	13,5		30-80	25 <mark>4</mark> 0	750	73-74	<mark>4,</mark> 8
БС 7-18×1×2-78	36	18,5	7			при		
БС 7-22×1×2-78	44	23,5	/			540 °C)		
BMC 6-7,2×1×2- 80	14,5	10,0	6			4200-		
BMC 8-26×1×2- 80	52	30.0	8	40-120	2560	400	<mark>9</mark> 5	5,0
BMC 9-18×1×3- 80	54	2010	9			540 °C)		

Таблица 2. Марочный ассортимент стеклянных волокон.

1.1.3. Свойства термопластов, армированных короткими волокнами (Продолжение Раздела 1)

Таблица 3. Физико-механические свойства полиамидов, наполненных 50% стеклянного волокна

	Композиции на основе				
Показатели своиства	ПА-6	ПА-66	ПА-610		
Плотность, кг/м ³	1570(1,38)	1570(1,4)	1500(1,38)		
Разрушающее напряжение, Мпа: при растяжении при изгибе при сжатии	150(2,1-1,8) 280(2,5-5) 168(2,5-3,6)	240(2,8-4,9) 300(3,1-5,1)	204(3,4) 302(3,6) 98,5(4,7)		
Удлинение при разрыве, %	2,5	5	2-3		
Модуль упругости, Гпа: при растяжении при изгибе	12,6(5-12) 14	13,5(4,8-7,5) 14,5	- 13,4		
Ударная вязкость по Изоду, кг см/см: с надрезом без надреза	20,8(1-3,8) 108	24,2(4,4) 108	4,86(1,5) 35		
Деформационная теплостойкость, °С при нагрузке 1,85 МПа	215	260	210		
Водопоглощение за 24 часа	0,8(0,27)	0,5(0,33)	0,16(0,4)		
Усадка, мм/мм	0,0025(0,28)	0,003(0,2)	0,0025(0,2)		
Коэффициент линейного термического расширения, °С-6 x 10	1,6	1,2-4,0	45		

Рис. 2. Изменение прочности при растяжении разных термопластов, заполненных стеклянными волокнами, в зависимости от их весового содержания. Композиции на основе: 1 - поликарбоната; 2 - найлона 66; 3 полистиролакрилонитрила; 4 - АБС; 5 – полистирола

Слайд 6

Раздел 1.1.4. Дефекты и их влияние на физико-механические характеристики в ПКМ (Продолжение Раздела 1)

Дефекты ПКМ различаются:

- по происхождению;
- местоположению в детали;
- глубине залегания:
- размерам

По масштабу:

- макро-; крупные дефекты в виде волостей, трещин, тяжей по границе раздела элементов конструкции;
- мезо- дефекты на уровне монослоёв и повторяющихся структур ПКМ, макропоры;
- **микро-** (армирующие волокна и матрица), отрывы и извлечение из матрицы отдельных волокон,

микропоры.

(Продолжение Раздела Механизм разрушения ПКМ, армированного короткими волокнами

Рис.4. Микрофотография роста краевого дефекта (этап2) для поликапроамидного стеклопластика.

Рис. 3. Процесс образования и роста

- дефекта Материал без приложения нагрузки. 1.
- Инициирование роста дефекта на торцах волокон в начальный 2. момент приложения нагрузки.
- 3. Рост дефекта по мере роста нагрузки, увеличение размеров торцевых дефектов и слияние их в поперечные трещины.

Слайд 9

Влияние пористости на физико-механические свойства дискретно армированного стеклопластика (Продолжение Раздела 1)

Рис.5.Зависимость прочности при растяжении (а) и сдвиге (б) от содержания пор в стеклопластике

K. M. Brockmulle, K. Friedrich, "Elastoplastic stress analysis of a short fibre reinforced composite using a three-dimensional finite element model with several close to reality features", Journal of materials science 27 (1992) 6506-6JI2.

1.2. Аналитическое моделирование деформационно-прочностных свойств термопластичных ПКМ (Продолжение Раздела 1)

Микроподход в моделировании ПКМ. Блочный метод

При применении метода конечных элементов для композитов эффективным оказывается блочный метод.

- В блочном методе при разбиении выделяются целые области, которые затем разбиваются на элементы.
- Для каждой такой области полагают, что постоянные материала являются неизменными.
- Одним из блоков является армирующее волокно, а вторым полимерная матрица.

Рис.6. Модель ПКМ, армированного

- 1 матрица (полимер)
 2 армирующий элемент (волокно)
- Рис.7.Распределение эквивалентных напряжений на торце волокна

МОДЕЛИ ПКМ ДЛЯ БЛОЧНОГО МЕТОДА

Все блочные модели являются осесимметричными и состоят из цилиндрических блоков матрицы и армирующего волокна.

Модель Кокса.

Касательное напряжение, действующее на границе между волокном и матрицей, можно определить из соотношений

$$\sigma_{f} = \frac{E_{f} - E_{m}}{E_{m}} \sigma_{c} \left\{ 1 - \frac{\operatorname{ch} \beta \left(l/2 - x \right)}{\operatorname{ch} \left(\beta l/2 \right)} \right\}$$
$$\tau_{m} = \frac{\left(E_{f} - E_{m} \right) r_{f} \beta \operatorname{sh} \beta \left(l/2 - x \right)}{2 \operatorname{ch} \left(\beta l/2 \right)} ,$$
$$\beta = \sqrt{\left\{ \frac{G_{m}}{E_{f}} - \frac{2\pi}{A_{f} \ln \left(R/r_{0} \right)} \right\}},$$

где r_0 — радиус поперечного сечения волокна; 2R — расстояние между центрами поперечных сечений волокон; A_f — площадь поперечного сечения волокна.

Слайд 12

Модель Аутуотер

где *t* толщина матричного слоя. В таком случае предельная длина волокна равна

$$\sigma_{f} = \frac{P_{m}}{A_{f} + A_{m}(E_{m}/E_{f})} \left[1 - \frac{\operatorname{ch}\left(\lambda x/d_{f}\right)}{\operatorname{ch}\left(\lambda l/d_{f}\right)} \right],$$

где λ — коэффициент, зависящий от диаметра волокна, модуля упругости и содержания армирующего материала в композите; A_m , A_f — площади поперечных се чений матрицы и волокна; P_m — сила

свойств дискретно-армированных ПКМ Модель Брокмюллера (Li n mail? insits Area r + r + r) THE SUBJECTIVE AN ADDRESS AND ₿ P K-nodes wi I, J symmetric Area y = 0: 700 Z U_= 5 Извлечение элементарной ячейки из геометрической модели композита и граничные условия E=0.5 % (a) C D 0 DBO 8=2% ИЩНО (6) H E F G H

Распределение фон Мизеса напряжений в плоскости y = 0 для (а) упругого случая (ε = 0,5%) и

(b) пластичного (ε= 2%). Нагрузка прикладывается справа (положительное z-К. М. Brockmulle, К Бандар (Положительное zmodel with several close to reality features", Journal of materials science 27 (1992) 6506-6JI2.

(Продолжение Раздела 1)

K. M. Brockmulle, K. Friedrich, "Elastoplastic stress analysis of a short fibre reinforced composite using a three-dimensional finite element model with several close to reality features", Journal of materials science 27 (1992) 6506-6JI2.

Раздел 2. Экспериментальная часть 2.1. Объекты исследования

Объект исследования: Дискретно армированный стеклопластик, на основе поликапроамидного связующего.

Таблица 4.Характеристики стеклянного волокна ВМС 6-7,2x1x2-80

Параметр	Значение
Линейная плотность µ	14,5
Разрывная нагрузка, Н	10,0
Предел прочности σ_{v_i} , ГПа	4,2
Предел прочности <i>б</i> *, ГПа	2,1
Модуль упругости Еу. ГПа	95
Модуль упругости Ех, ГПа	50
Плотность <i>р</i> ., кг/м ³	2560

Таблица 5.Характеристики поликапроамида

Наименование показателя	Величина
Плотность, кг/м ^а	1150-1160
Температура плавления, °С	220-250
Разрушающее напряжение при растяжении, МПа	65-85
Разрушающее напряжение при сжатии, МПа	100-110
Относительное удлинение при разрыве, %	15-30
Изгибающее напряжение при величине прогиба равной 1.5 толщины образца, МПа, не менее	80
Сопротивление ударной нагрузке (ударная вязкость), без надреза, кДж/ м²	не разрушаются
Модуль упругости, ГПа	2,3-2,4

Рис.8. Тканый полуфабрикат ТОПАС, полученный по волоконной

Таблица 6. Характеристики тканного полуфабриката ТОПАС

Марка TII	Нить (µ, текс)		Плотность		а С	6	Разрывная	
	Основа	Уток	укладки по утку (по основе), см ⁻¹	n _a /n _{m v}	фа	Масса 1 м ² , г	нагрузка полоса ткани ширино 50мм, Н	
							Основа	Уток
ТОПАС-1	BMIIC 6-7,2×1×4 (29) IIKA (50)	ПКА(50)	(25) (10)	2,5	0,36	140	766	669

Канович М.З., Рогинский С.Л. Высокопрочные стеклопластики – М.: Химия, 1979. – 143 с.

(Продолжение Раздела Схема изебтовления образца стеклопластика

1.Раскрой тканого полуфабриката ТОПАС и полиамидной плёнки на заготовки.

2.Подготовка формы и сборка пакета из 11 слоёв (Размер пресс-формы= 200 х 100 мм)

5.Механическая обработка

6.Вырубка образцов в виде лопаток для испытаний

3.Прессование при T= 240°C, P=2,5 МПа, t=15 мин; 4.Охлаждение под давлением до T=25°C

2.2 Методики испытаний.

Определение физико-механических характеристик стеклопластика при растяжении по ГОСТ 25.601-80

(Продолжение Раздела 2)

Эскиз образца в виде двусторонней лопатки для испытаний на одноосное растяжение с размерами, выполненными по ГОСТ

Образцы для испытаний на растяжение

1. Предел прочности при растяжении определяется из уравнения:

$$\sigma^+ = P^{\max}/A$$

(

где

σ+ -предельная прочность на растяжение, МПа
 Р^{max} - максимальная нагрузка до разрушения, Н
 А – средняя площадь поперечного сечения, мм²

2. Модуль упругости при растяжении по данным кривой напряжения-деформации рассчитывается по формуле:

 $\mathsf{E} = \frac{\Delta \sigma}{\Delta \epsilon}$

где E – модуль упругости при растяжении, ГПа Δσ - различие в растягивающих напряжениях между двумя деформируемыми точками

 $\Delta \epsilon$ - различие между двумя точками деформации (номинально 0,002)

Определение физико-механических характеристик стеклопластика при межслоевом сдвиге (Продолжение Раздела 2)

> Прочность при межслоевом сдвиге определяется

> > по формуле: $\tau = P_{\text{pasp}}/F$

т – прочность при межслоевом сдвиге, МΠа

Р_{разр} - разрушающее усилие, Н F - площадь среза, мм²

Статистическая обработка проводилась по методу Стьюдента с доверительной вероятностью 0,95, по формулам:

$$\langle x \rangle = \frac{1}{n} \sum_{i=1}^{n} x_i;$$

$$s_{\langle x \rangle} = \sqrt{\frac{1}{n(n-1)} \sum_{i=1}^{n} (x_i - \langle x \rangle)^2};$$
$$v = \frac{s}{\langle x \rangle}.$$

Образец для определения прочности при межслоевом сдвиге.

(Продолжение Раздела 2)

Результаты испытаний стеклопластика при

растяжении

№ образца	Предел прочности при разрыве $\sigma_y,$ МПа	Предел прочности при разрыве σ_y с доверительной вероятностью 0,95, МПа	№ образца	Предел прочности при разрыве $\sigma_{\chi},$ МПа	Предел прочности при разрыве σ_x с доверительной вероятностью 0,95, МПа
1	129,5		1	79,9	
2	130,8		2	79,5	6.
3	130,2	130,6±13,65	3	80,4	80,2±4,1
4	129,1		4	80,1	
5	130,5		5	79,7	

Результаты испытаний стеклопластика при межслоевом сдвиге

<mark>№ образца</mark>	Предел прочности при разрыве т _{xz} , МПа	Предел прочности при разрыве т _{xz} с доверительной вероятностью 0,95, МПа
1.	33,2	
2	32,7	-
3	32,9	32,8±2,42
4	33,0	1
5	32,6	

Раздел 3. Разработка дискретно-армированной модели ПКМ с дефектом на границе раздела и исследование деформационно-прочностных свойств 3.1. Разработка физической модели и структуры с дефектом в виде пор на границе раздела

Свойства компонентов ПКМ.

Параметр	Волокно	Матрица	
Модуль упругости Ех+, ГПа	50	6	-
Модуль упругости Еу*, ГПа	80	6	- 7
Коэффициент Пуассона µ	0,2	0,27	
Объемное содержание %	20	80	1
Разрушающее перемещение, мкм		2,5	
Диаметр волокна, мкм	6		Ĩ

Рис. 9. Физическая модель ПКМ

Допущения:

- 1) Все волокна расположены в направлении распределения нагрузки регулярно и равномерно.
- Краевой эффект моделируется отсутствием взаимодействия между волокном и матрицы на торцах волокон.
- 3) Напряжение распределяется в волокне и матрице равномерно.
- 4) Разрушение происходит при достижении волокнами предела прочности.
- 5) Модель осесимметрична.

Граничные условия:

1) Модель нагружается вдоль оси Y усилием, соответствующим предельному значению относительного удлинения стеклянных волокон.

- 2) Нижняя часть модели закреплена консольно.
- 3) Левая граница модели ограничена перемещениями по оси Х.
- 4) Правая граница перемещается свободно.

3.2. Методика построения КЭ модели развития дефекта на

границе раздела фаз.

(Продолжение Раздела 3)

Методика построения конечно-элементной модели (КЭ)

в программном комплексе ANSYS: 1) Постановка задачи

- 1)
- 2) Назначение типов конечных элементов и их особенности
- 3) Определение свойств материала модели
- 4) Задание упругих констант для стеклянного волокна
- Создание геометрической модели 5)
- Присвоение свойств блокам волокна и матрицы 6)
- 7) Разбиение модели на конечные элементы (КЭ)
- Задание граничных условий 8)
- 9) Расчет
- 10) Отображение деформированного и недеформированного состояния модели

3.3. Влияние наличия дефекта на границе раздела на деформационно - прочностные свойства стеклопластика с использованием КЭ модели. (Продолжение Раздела 3)

Напряжённое состояние модели

Деформированное состояние стеклопластика а-25%, б – 50%, в- 100% от разрушающей деформации волокна

(Продолжение Раздела

Напряжения **бу** на границе раздела волокно - матрица при деформациях 25%, 50%, 100% от разрушающей деформации волокна в зависимости от расстояния от дефекта.

Сдвиговые напряжения τ_{xy} на границе волокно – матрица при деформации 25%, 50%, 100% от разрушающей деформации волокна в зависимости от расстояния от дефекта.

Слайд 23

Нормальные напряжения **ох** на границе раздела волокно - матрица при деформациях 25%, 50%, 100% от разрушающей деформации волокна в зависимости от расстояния от дефекта.

3.4. Сравнение результатов численного моделирования с экспериментальными

(Продолжение Раздела 3)

Параметр	Моделиро вание	Экспериментал ьные данные	Отклонение (моделирование), %	Аналитическое решение (модель Кокса)	Отклонение (аналитическое решение), %
Нормальное напряжение ох, МПа	85	80,2±4,1	5,5	91,8	14,5
Напряжение оу , МПа	138	130,6±13,65	5,3	144,9	<mark>11,0</mark>
Сдеиговое напряжение т _{лу.} МПа	34,4	32,8±2,42	5,6	35,9	9,7

Вывод

В первом разделе рассмотрены^{*bI*} материаловедческие основы создания дискретно армированных стеклопластиков, проанализированы термопластичные матрицы, стеклянные армирующие волокна, свойства термопластов, армированных короткими волокнами, дефекты и их влияние на физико-механические характеристики стеклопластиков. Приведены аналитические модели для прогнозирования деформационно-прочностных ПКМ. Рассмотрены методы построения КЭ модели ПКМ с учётом развития дефекта в виде краевого эффекта торцов волокон на границе раздела волокно-матрица. Выявлены преимущества использования блочного метода для построения КЭ моделей ПКМ. Для исследования влияния микроструктуры ПКМ на деформационнопрочностные свойства при различной нагрузке, в качестве базовой была использована модель Кокса.

Во втором разделе описаны методика получения образцов однонаправленного дискретно армированного стеклопластика и методики испытаний этого материала на растяжение и сдвиг. Проведены экспериментальные исследования по определению основных физико-механических свойств стеклопластика при растяжении и сдвиге. Предельные значения напряжений возникающих при растяжении и сдвиге составили: $\sigma_{x} = 80,2\pm4,1$ $\sigma_{y} = 130,6\pm13,65$ $T_{xy} = 32,8\pm2,42$

В третьем разделе исследовано с помощью КЭ моделирования влияние дефекта на границе раздела фаз на деформационно-прочностные свойств стеклопластика. На основании выбранных начальных условий и допущений, предложена физическая модель, построена КЭ модель, осуществлён расчёт, проанализированы полученные данные, проведена верификация модели на адекватность. Получены зависимости, характеризующие напряженное состояние ПКМ при различной степени деформирования. Анализ полей напряжений, возникающих в ПКМ при разрушении, показал, что в разрушении ПКМ главную роль играют нормальные напряжения. Установлено, что предложенная в работе конечно-элементная модель стеклопластика содержащая дефект в виде краевого эффекта торцов волокон на границе волокно-матрица показала хорошую корреляцию с экспериментальными данными. Отклонения данных численного моделирования от экспериментальных соответственно равны: для σх- 5,5%, σу-5,3%, т_{xy} - 5,6%. Аналитический подход с использованием модели Кокса в определении вышеназванных характеристик даёт гораздо большую погрешность для σх- 14,5%, σу-11,0%, т_{xy} - 9,7%.

СПАСИБО ЗА ВНИМАНИЕ!