Классификация свойств строительных материалов

Свойствами называют способность материалов определенным образом реагировать на воздействие отдельного или нескольких внешних или внутренних факторов: силовых, усадочных, тепловых и других.

Группы свойств

- ? Физические свойства характеризуют материал как физическое тело, а также его отношение к различным физическим факторам (действию воды, различных температур, электрического тока и т.д.).
- ? Механические свойства характеризуют способность материала сопротивляться действию внешних механических сил, приводящих к сжатию, растяжению, изгибу.
- ? Технологические свойства характеризуют способность материала подвергаться обработке и переработке (шлифоваться, полироваться, изменять форму, уплотняться).
- ? Химические свойства характеризуют способность материала к химическим превращениям под действием различных веществ и факторов (превращениям полезным гидратация вяжущих веществ и вредным коррозия материалов).

Физические свойства.

Свойства материала, характеризующие его как физическое тело.

Истинная плотность (ρ) — масса единицы объема материала в абсолютно плотном состоянии, т.е. без пор и пустот, присущих материалу в его естественном состоянии.

$$\rho = \frac{m}{V_a}$$

Размерность — $\Gamma/\text{см}^3$ или $\kappa \Gamma/\text{м}^3$.

На истинную плотность материала влияют:

Химический состав материала, например:

– для органических материалов (С, Н)	$1-1,6 \ г/cm^3$
— ппа неорганинеских материапор;	
для неорганических материалов:	
оксиды Si, Ca, Al	$2,2-3,3 \text{ г/cm}^3$
портландцементный клинкер	$3,2 \Gamma/\text{cm}^3$
керамический черепок	$2,5-2,6 \text{ г/cm}^3$
– для стали (Fe)	$7,8-7,9 \ г/см^3$

Внутреннее строение вещества, плотность упаковки частиц (атомов, молекул), например:

/	H_2O	_	вода $-1 \Gamma/\text{см}^3$,	лед -0.92 г/см ³ ;
	\mathbf{C}		графит – 2,2 г/см ³ ,	алмаз — 3,5 г/см 3 .
			1 papri 2,2 1/CN1,	$a_{JIM}a_{J} = 3, J = 1/CM .$

Средняя илотность (ρ_m) — характеризует массу единицы объема материала в естественном состоянии (вместе с порами и пустотами). Рассчитывается путем деления массы образца на его объем:

$$\rho_m = \frac{m}{V_e}$$

Размерность — в г/см 3 или кг/м 3 .

На среднюю плотность влияют:

- ? пористость материала (при увеличении пористости средняя плотность уменьшается);
- ? влажность материала (чем выше влажность, тем выше средняя плотность).

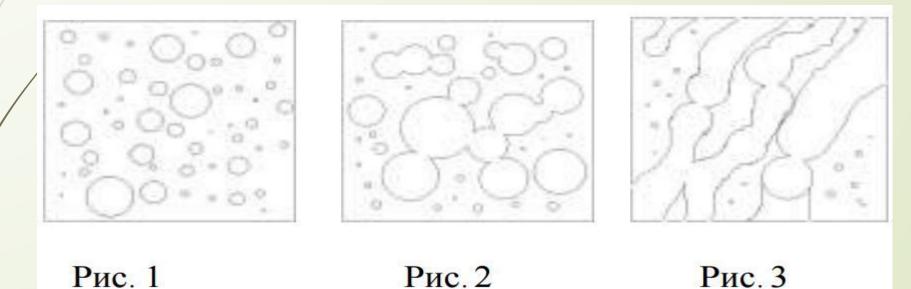
- ? Среднюю плотность определяют у материалов в сухом состоянии.
- ? Объем материала измеряют по-разному в зависимости от формы образца или изделия (правильная геометрическая форма или неправильная).
- γ По величине ρ_m можно косвенно судить о многих свойствах материала (теплопроводности, прочности).
- ? Средняя плотность одно из самых важных свойств теплоизоляционных материалов, поэтому значение средней плотности является *маркой* теплоизоляционных материалов.

Пористость (П) – степень заполнения объема материала порами; ее вычисляют по формуле:

$$\Pi = \frac{V_{nop}}{V_e} \cdot 100 \%.$$

Пористость изменяется в широком диапазоне у строительных материалов:

- ? $\Pi = 0 \%$ стекло, битум, сталь, полимеры;
- ? $\Pi = 0,2-0,8 \% \text{гранит};$
- ? $\Pi = 75-85 \%$ газобетон (ячеистый бетон);
- ? $\Pi = 90-98 \%$ ячеистые пластмассы.


? Поры различаются по размеру, форме и характеру.

? Поры могут быть размером от 10^{-3} до 10^{-9} м

- ? микрокапилляры, $\mathbf{r} \le 0.1$ мкм (1 мкм = 10^{-6} м = 10^{-3} мм) (мелкие);
- ? макрокапилляры, **r** от 0,1 до 10 мкм (средние);
- ? некапиллярные поры (крупные).

По форме и характеру бывают:

- ? изолированные, закрытые поры (рис. 1);
- ? сообщающиеся поры (рис. 2);
- ? открытые поры (рис. 3).

При увеличении і	пористости:	
Уменьшаются	средняя плотность материала,	
	теплопроводность материала,	
Увеличиваются	водопоглощение (при открытых порах),	
	водопроницаемость (при открытых порах)	
	(p (pp)	

Для большинства материалов наиболее благоприятная структура — микропористая с равномерно распределенными замкнутыми порами.

Пустоть – степень заполнения объема изделия пустотами, %.

$$\Pi = (V_{\Pi}/V_{e})100 \%$$
.

- ? Для зернистых сыпучих материалов, не имеющих постоянной формы, характеристиками являются плотность зерна, насыпная плотность и межзерновая пустотность.
- ? Плотность зерна (ρ_3) масса единицы объема зерна в естественном состоянии, т.е. это средняя плотность применительно к зерну.

Насыпная плотность (ρ_{H}) — характеризует массу единицы объема зернистого материала (песка, щебня, гравия) в рыхлонасыпанном состоянии. В ее величине отражается влияние не только межзерновых пустот в рыхлонасыпанном объеме материала, но и пор в каждом зерне.

$$\rho_{\mathcal{H}} = \frac{m}{V_{\mathcal{H}}}$$

Примеры:

насыпная плотность песка — 1600 кг/м^3 , насыпная плотность цемента — 1100— 1300 кг/м^3 , насыпная плотность легких заполнителей —250— 1100 кг/м^3 .

Межзерновая пустотность – степень заполнения объема рыхлонасыпанного материала межзерновыми пустотами, %.

$$\Pi = [(\rho_3 - \rho_H)/\rho_3]100, \%.$$

Межзерновая пустотность зависит от наличия в материале зерен разного размера и соотношения между ними. Поэтому для песка и щебня предъявляются требования к гранулометрическому составу.

? Для тонкодисперсных материалов, получаемых помолом, важной характеристикой является степень измельчения — тонкость помола, определяемая путем просеивания пробы через стандартное сито.

? Тонкость помола – величина остатка на сите в %.

Теплофизические свойства

- ? Теплопроводность способность материала проводить через свою толщу тепловой поток, возникающий под влиянием разности температур на поверхностях, ограничивающих материал.
- ? Теплопроводность оценивают *коэффициентом теплопроводности* λ, который равен количеству тепла, проходящего через стену из материала толщиной в 1 м и площадью 1 м² в течение 1 ч при разности температур на противоположных поверхностях в 1 ° С.

- ? Величина теплопроводности зависит от целого ряда факторов:
 - плотности и пористости;
 - состава и внутреннего строения материала;
 - влажности и температуры материала.

Влияние плотности и пористости на теплопроводность материалов.

Для теплоизоляционных материалов предпочтительно мелкопористое строение с замкнутыми порами, это затрудняет теплопередачу.

? Влияние состава и строения материала каркаса. Чем сложнее и больше по размерам молекулы вещества каркаса, тем ниже λ.

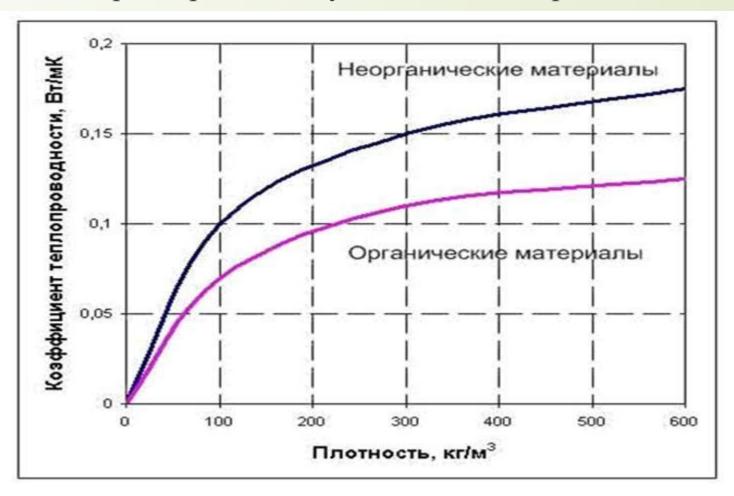


Рис Зависимость теплопроводности ТИМ от плотности

? У кристаллических веществ теплопроводность выше, чем у материалов аморфного строения.

? У волокнистых и слоистых материалов теплопроводность зависит от направления теплового потока: вдоль или поперек волокон или слоев.

Например, у древесины сосны $\lambda_{\parallel} - 0.35 \; \text{Bt/(м·K)};$ $\lambda_{\perp} - 0.17 \; \text{Bt/(м·K)}.$

- ? Влияние влажности на теплопроводность материалов.
- ? Теплопроводность пористых материалов резко возрастает при увлажнении и особенно замерзании воды в порах материала, так как:

$$\lambda_{\text{возд.}} = 0,023 \text{ BT/(м·K)};$$
 $\lambda_{\text{воды.}} = 0,55 \text{ BT/(м·K)};$
 $\lambda_{\text{льда.}} = 2,3 \text{ BT/(м·K)}.$

- ? Влияние влажности на теплопроводность материалов.
- ? Повышение температуры приводит к линейному возрастанию теплопроводимости

? Формула В.П. Некрасова

$$\lambda = 1{,}16\sqrt{0{,}0196 + 0{,}22d^2} - 0{,}16$$

? Теплоемкость — способность материалов поглощать (аккумулировать) теплоту при нагревании. Теплоемкость оценивается величиной удельной теплоемкости С, которая равняется количеству тепла, необходимому для нагревания 1 кг материала на 1 °C.

? Температурные деформации — изменения линейных размеров или объема материала при изменении его температуры. Обычно при повышении температуры размеры и объем увеличиваются, при снижении температуры размеры и объем, соответственно, уменьшаются.

? Огнестойкость — способность материалов противостоять действию огня при пожаре в течение определенного времени без существенного снижения прочности и значительных деформаций.

Строительные материалы подразделяются на *негорючие* (НГ) и *горючие* (Г).

- ? **Негорючие материалы** под воздействием огня и высокой температуры не горят, не воспламеняются и не тлеют. Это неорганические материалы бетоны, керамика, минеральная вата, стекло и другие материалы.
- **Горючие** строительные материалы подразделяются на четыре группы: Г1 (слабогорючие), Г2 (умеренногорючие), Г3 (нормальногорючие), Г4 (сильногорючие).

- ? Слабогорючие материалы под воздействием огня или высокой температуры воспламеняются с трудом, тлеют и обугливаются, но после прекращения действия огня их горение и тление прекращается.
- ? Сильногорючие материалы органические материалы, которые под воздействием огня и высокой температуры воспламеняются и продолжает гореть после удаления источника огня: древесина, битум, большинство полимеров.

? Предел огнестойкости — продолжительность сопротивления воздействию огня до потери несущей способности или прочности.

? Огнеупорность — способность материала выдерживать длительные воздействия высоких температур без разрушения и деформаций (без плавления).