Overview

•This is a project I assigned a few years ago

Read the project description

- What are the objectives?
- What is to be decided what are the variables?
- Which parameters are set? Which parameters will have to be varied (sensitivity analysis)?

•Look at the provided input data

- Note that it gives most of the necessary sets and data
- It is in another language, so you'll have to translate it to MPL
- There's a fair amount if it, though, and it has multiple dimensions

First, Let's Answer the Questions (1 of 2)

•What are the objectives?

- Minimize aircraft losses
- Minimize the number of days to kill the target set
- Meet investment limit (which is subject to discussion)
- We will have to decide how to trade between these three objectives, so we have a goal program

•What are the variables?

- The number of weapons to buy
- The assignment of weapons to targets in each scenario
- The assignment of sorties (one aircraft flying to one target) in each scenario
- We might need other variables too

First, Let's Answer the Questions (2 of 2)

•Which parameters will have to be varied?

- Overall investment: opinion ranges from \$35M \$200M
- Probabilities of the 3 scenarios
- Fortunately, people seem to agree on everything else
- However, the fact that certain things have to be varied may affect the design of the model

How to Start?

•What's the general form of the model?

- Multiple scenarios => two-stage recourse model
- Multiple goals => some sort of goal program
- Final model will have to combine goals with two-stage recourse formulation

•However, we need to work on some things with the basic 1-scenario problem

- How do we determine the length of the bombing campaign?
- How do we enforce all the conditions on using certain bombs in certain weather conditions?
- What variables will we need to represent all this?

Campaign Length and Weather (1 of 3)

This is probably the hardest part of this project

Take the SSC scenario

- It has bad weather 30% of the time (proportion 0.3)
- We can fly 90 sorties per day in this scenario
- If we need to fly 270 sorties in bad weather, it will take 270 / (90*0.3) = 10 days on average to do it

•But why fly in bad weather at all?

- We still want to minimize the time to conduct the campaign
- Not flying in bad weather increases campaign length by at least 30% (and gives the enemy an unearned advantage)

Campaign Length and Weather (2 of 3)

• Here's a question the students raised in this project

- There are 6 target types (3 collateral damage X 2 hardness)
- Does each target type have to be killed in proportion to the weather?
- Example: SCC has 120 soft targets with strict collateral damage requirements. Do we have to kill 40% in good weather (48), 30% in fair weather (36), and 30% (36) in bad weather?

Answer

- No, these are fixed targets (e.g., buildings)
- We can attack them whenever we want
- We do NOT need to constrain the number attacked to weather proportions
- However, we still need to track the TOTAL number of sorties flown in various weather conditions

•An aside

• You could argue that you need to constrain attacks to weather, because the enemy might use certain buildings on certain days

Campaign Length and Weather (3 of 3)

So here's the sub-model

- days required for scenario >= total sorties flown in weather condition / (sorties per day in scenario X proportion of time in weather condition)
- We need this constraint for every weather condition
- So, days required will be the maximum

Another question: can sorties assigned be fractional?

- Answer: yes, we are working with expected values for kills and attrition
- Example: A GPS PK = 0.6 => 1/0.6 = 1.67 bombs *on average* required for kill
- 2 GPS bombs per sortie / 1.67 bombs required => 1.2 *sorties* required *on average* to kill the target
- Since those numbers are fractional, it is OK to use fractional (continuous) sortie assignments
- We are treating the sortie assignments as expected values

Enforcing Weapon-Target Limitations

•Certain bombs only work in certain weather states

- LGB (laser-guided bomb) requires good weather
- GPS bomb works in all weather states, but is less accurate and requires more on average to get a kill

•Certain bombs have unacceptable collateral damage

- Enormous consideration in modern warfare
- Unguided weapons can have large miss distances due to wind and often hit unintended targets
- However, guided weapons are much, much more expensive

•So, the assignment variables ...

• Must be a function of scenario, target type (hardness and collateral damage), and weather

Next Step: Start Formulating

I'll show you this via MPL code As usual, the first step is to write the indexes

INDEX

```
e := (MTW1,MTW2,SSC) {theater}
b := (soad,gps,lgb,unguided) { weapon type }
c := (strict, medium, none) {collateral damage category
}
h := (hard, soft) { target hardness }
w := (good, fair, bad) { weather state }
```

Multidimensional Sets

I wanted the students to use multidimensional sets to define allowable combinations of things
Here are the sets I defined, in MPL:

{ allowable weapon and weather combinations }

```
wxw[b,w] := (soad.good, soad.fair, soad.bad,
    gps.good,gps.fair,gps.bad,lgb.good,
    unguided.good, unguided.fair );
```

{ allowable weapon and collateral damage combinations }

Data

- There's a lot of data in this model
- •One of the aims of the project was to teach students how to get higher-dimensional data into MPL
- •See the MPL code for all of it; but here are examples

Variables

•This is a recourse model, so we have

- Initial decisions: this is the number of bombs bought
- Everything else: these are decisions made *in each scenario* (indexed by e)

Here are the variables I used

- Note the use of the multidimensional sets to limit allocation variables to allowed combinations
- This is a good way to use the MPL "IN" operator

VARIABLES

- bought[b]; { Weapons bought }
- attr[e]; { Attrition by theater }
- days[e]; { Days to prosecute campaign by theater }

{ Sorties allocated by scenario, weapon, target damage/hardness, and weather }

sorties[e,b,c in cda, h, w in wxw];

Modeling the Goals

- •This is the second-hardest part of the project
- And, there are several choices of how to do it

•There are 3 factors

- Total aircraft attrition (losses)
- Expected days to complete the campaign
- Money spent on weapons

I used a weighted objective, but:

- I knew I would make several runs
- I could get a "near-preemptive" goal program by using large and small weights
- I could control the budget by a simple constraint, and easily test many budgets

A Setup for a Run

•What was I looking at here?

- Wanted mostly to minimize expected days (weight = 1)
- Gave a small weight to attrition to make sure that it was considered (break ties among near-identical solutions)
- I did not weight the cost; I handled that via a budget constraint
- Note the use of the MPL MACRO function

```
DAYWGT := 1;
ATTRWGT := 0.0001;
COSTWGT := 0;
MACRO
bcost:=sum(b: COST[b]*bought[b]);
MODEL
Min weighted = DAYWGT*SUM(e: PROB[e]*days[e]) +
ATTRWGT*SUM(e: PROB[e]*attr[e]) +
COSTWGT*bcost;
```

bcost < BUDGET;</pre>

Constraints

SUBJECT TO

kills[e,c,h] WHERE (TGTS[e,c,h] > 0): { Kill constraints }

SUM(b,w: PK[b,e,h]*LOAD[b]*sorties[e,b,c,h,w]) > TGTS[e,c,h];

buys[e,b]: { Buy and inventory constraints - by scenario }

SUM(c,h,w: LOAD[b]*sorties[e,b,c,h,w]) < INV[b] + bought[b];</pre>

expattr[e]: { Expected attrition by scenario - passenger constraints }

attr[e] = SUM(b,c,h,w: ATR[e,b,w]*sorties[e,b,c,h,w]);

daysreq[e,w]: { Days required by scenario - passenger constraints }

SRTD[e]*WX[e,w]*days[e] > SUM(b,c,h: sorties[e,b,c,h,w]);

bcost < BUDGET; { Total spent on weapons }</pre>

BOUNDS

```
bought[b] < MAXBUY[b];</pre>
```

Comments on Constraints

•Remember what a "passenger variable" is

- Quantity computed as a convenience to make the model easier to understand
- Could be substituted out
- The "passenger constraints" are there to compute the passenger variables **attr[e]** and **days[e]**
- You might be tempted to use the MPL MACRO function, but MPL does not allow macros to be indexed

•Note also the daysreq constraints

- The constants are multiplied on the LHS, rather than divided on the RHS
- Again, MPL doesn't like dividing constants in equations

And This is the Whole Model!

•Despite the frightening description, the model is:

- Fairly simple
- Combines a goal program and a recourse model
- Allows easy adjustments to the three goals to see how the answers change

•But what was hard?

- Figuring out how to do weather and days required for the campaign
- Getting the data into MPL
- Getting MPL to limit weapon-target-weather assignments to allowed combinations
- Coming up with a goal structure to allow different runs

Runs and Answers

•The spreadsheet "Project Cases.xls" on Moodle shows the cases I ran initially

- 17 combinations of budget, scenario probabilities, and weights on attrition and days
- This was more of an "exploratory analysis" to see broad trends

Large variations in answers

- 10 22 days for campaign, 16 24 aircraft lost for MTW-2
- GPS bomb buys range from 0 2788

•But some things don't change ...

- We never buy any new unguided weapons
- Little variation in MTW-1 days for campaign, SSC attrition

•Overarching conclusion: how much do you want to spend to improve MTW-2 outcomes?

Some Questions for You ...

- •What other runs would you make?
- •How would you present the results?

•Can you modify the model to compute worst-case probabilities for the scenarios?

- Note that the "worst case" depends on weights on the goals
- So you could have *multiple* worst cases
- Also, suppose each scenario had to have a minimum probability in the worst case. Any idea how to do that? (Ask me next semester)

•Finally, this project, though dated, is very realistic