ЛАЗЕРНАЯ ТЕРАПИЯ В СТОМАТОЛОГИИ ФИЗИОЛОГИЧЕСКИЕ МЕХАНИЗМЫ ЛЕЧЕБНОГО ПРИМЕНЕНИЕ **НИЗКОЭНЕРГЕТИЧЕСКОГО** ГЕЛИЙ-НЕОНОВОГО ЛАЗЕРА


 В 1960 году был создан первый низкоэнергетический лазер непрерывного действия на основе инертных газов - гелий-неоновый лазер, излучающий в красном диапазоне спектра с длиной волны о.6328 мкм, и первый импульсный рубиновый лазер, работающий в том же диапазоне с длиной волны 0.6943 MKM.

PROF. FINSENS

LICHTSAMMELAPPARATE

"GRAND PRIX" PARISER AUSSTELLUNG 1900

NUR ZU HAREN DURCH DEN GENTRALAGENTEN

N. A. SCHJØRRING

KOPENHAGEN

DANEMARK

Рисунок 1. Первые медицинские установки для светолечения (фотохромотерапии). Иллюстрация из монографии N.Finsen, 1896.

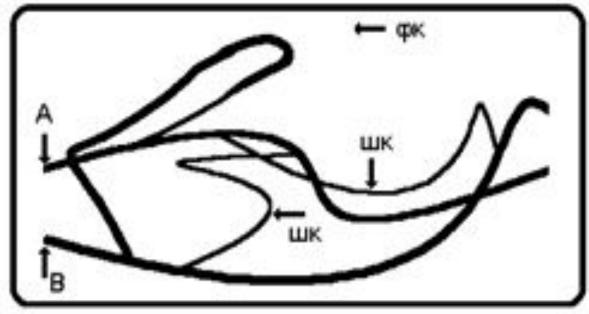
С 1964 года впервые в Казахском университете под руководством проф.
В.М. Инюшина начаты исследования биологической активности излучения низкоэнергетических лазеров в красном диапазоне.

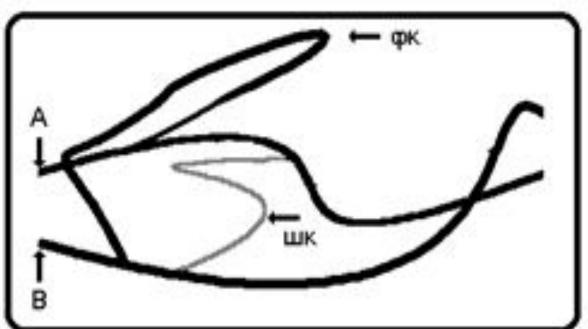
 Вскоре появились первые сообщения успешного практического применения излучения гелий-неонового лазера (ИГНЛ) для лечения заболеваний слизистой рта (Корытный Д.Л.,1980), болезней позвоночника и суставов (Мазо Л.А., Броэр Б.А.,1976) и заболеваний нервной системы у детей

- Начиная с середины 70-х годов, лазерная терапия значительно расширяет область своего применения
- В Москве создан институт лазерной медицины во главе с академиком О.К. Скобелкиным. Ежегодно проводятся международные симпозиумы по лазерной медицине, основными направлениями которой являются лазерная терапия, лазерная хирургия и фотодинамическая терапия. Число ежегодных публикаций по этой проблеме превышает 1000. Аналогичные центры созданы также в США, Израиле, Германии и других странах. В 1994 году образована Международная Ассоциация по Лазерной терапии - The World Association for Laser Therapy (WALT).

Механизм действия

- Облучение МКС стимулирует образование активных форм кислорода.
- МКС лазера активизирует клетки, выполняющие фагоцитарную функцию: нейтрофилы и их предшественники.
- При этом реакция нормально функционирующих клеток на лазерное излучение не выражена.

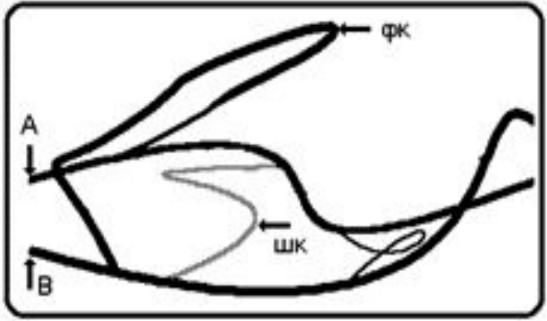

- При проведении лазеротерапии МКС ИГНЛ выявлено снижение АТФазной активности
- увеличение концентрации АТФ в эритроцитах крови
- снижение интенсивности перекисного окисления липидов, за счет активности ферментов антиперекисной защиты,что предупреждает нарушение барьерной функции мембран ишемического характера


- Так у больных ишемической болезнью сердца, получающих лазеротерапию:
- содержание АТФ в эритроцитах увеличивается на 49%,
- активность каталазы на 11%,
- снижается спонтанная агрегация эритроцитов на 67%
- происходит активизация фибринолитической активности крови.
- повышаются антиоксидантные свойства крови и повышает резистентность организма.

При воздействии МКС на периферическую нервную систему, выявлена его способность повышения порог возбудимости, создавать состояние "оперативного покоя", которое характеризуется усилением обменных процессов (за счет активизации симпатической регуляции) и аналгетическим эффектом.

 При проведении внутрисосудистого облучения крови больным с цереброваскулярными заболеваниями отмечен симпатиколитический эффект, что уменьшает риск ишемических инсультов

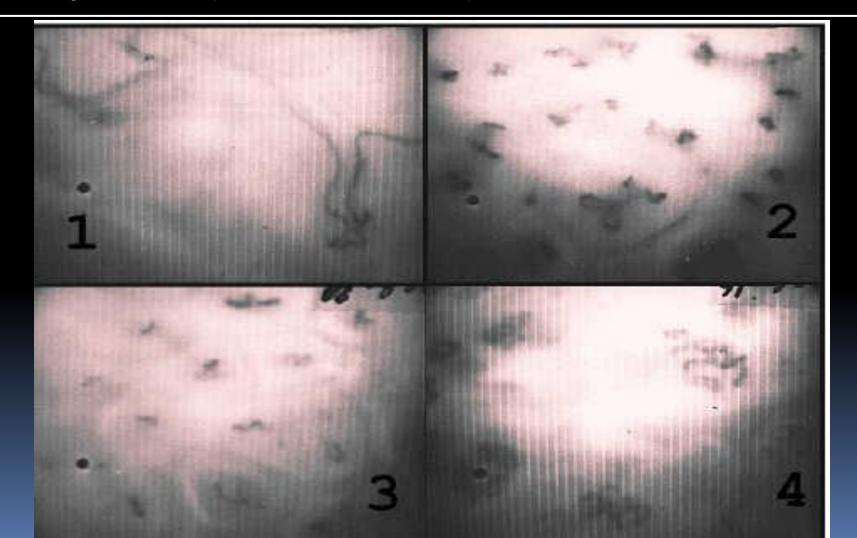
ИЗМЕНЕНИЕ СТРУКТУРЫ МИКРОЦИРКУЛЯТОРНОГО РУСЛА ПРИ ОБЛУЧЕНИИ КРОВИ МКС ЛАЗЕРА.



 ДО ОБЛУЧЕНИЯ: Уменьшено число функционирующих капилляров, отсутствует дифференциация венозных и артериальных отделов, "открыты" шунтирующие капилляры.

II. ЧЕРЕЗ 10 МИНУТ ПОСЛЕ НАЧАЛА СЕАНСА:

снижение "сброса" крови по шунтам, восстановление нормального капиллярного кровотока



III. YEPE3 20 MINHYT ПОСЛЕ НАЧАЛА CEAHCA: Восстановление нормального капиллярного кровотока: дифференцированы артериальные и венозные отделы. IV. YEPE3 30 MUHYT ПОСЛЕ НАЧАЛА CEAHCA: возврат к исходному патологическому капиллярному кровотоку в результате передозировки экспозиционной дозы

УСЛОВНЫЕ ОБОЗНАЧЕНИЯ: А - артериола; В - венула; фк - функционирующий капилляр; шк - шунтирующий капилляр

Капилляры кожи нижней трети голени у больного с Зудековской остеодистрофией до (1), через 10(2), 20(3) и 30(4) минут сеанса внутривенного облучения крови МКС лазера.

Условия проведения лазеротерапии

Сеанс лазеротерапии проводят в затемненном помещении с максимально возможным исключением посторонних источников света. Это является важным условием достижения максимального терапевтического эффекта. Весьма желательно проведение темновой адаптации больного в течение 10-15 минут. по нашему мнению, важным условием проведения лазеротерапии является информированность больного о проводимом лечении, возможных реакциях организма, а также положительный эмоциональный настрой больного.

Аппаратура для проведения лазеротерапии.

■ В начале своей работы (1975-1982 г.г.) использовали технические гелийнеоновые лазеры типа ЛГ75, ЛГ38, ЛГН111 с выходной мощностью 10-50 мВт и длиной волны 0.6328 мкм, снабженные самодельными фокусирующими устройствами

 Современные лазеротерапевтические установки на основе гелий населена

лазера.

- В дальнейшем появились более или менее удачные конструкции медицинских лазерных установок:
- А) на основе гелий-неоновых лазеров (непрерывного действия с длинной волны о.6328 мкм, с выходной мощностью 12-20 мВт.):
- лазерная физиотерапевтическая установка УЛФ-о1;
- аппарат физиотерапевтический диагностический лазерный АФДЛ-1;
- лазерная физиотерапевтическая установка "ЛЮЗАР";
- аппарат лазерный физиотерапевтический малогабаритный "ФАЛМ-1";
- аппарат лазерный физиотерапевтический АЛФ-1.

• Б) на основе полупроводниковых лазеров (непрерывного действия с длиной волны о.89 мкм.): аппарат лазерный физиотерапевтический "УЗОР".

 В) на основе полупроводниковых лазеров (импульсного действия): лазерный импульсный терапевтический аппарат "ЛИТА-1"; магнитоинфракрасный лазерный терапевтический аппарат МИЛТА.

Работа с лазерным излучением.

 При работе с лазерными излучателями опасность для персонала представляют прямые и отраженные лучи лазера, ВЧ и СВЧ излучения, ионизация воздуха, а также высокое напряжение. Объектом поражения обычно являются органы зрения, кожа и нервная система. Наиболее частыми заболеваниями обслуживающего персонала являются вегетативный синдром, вегетососудистые дисфункции и астеновегетативный синдром

 Гелий-неоновые и терапевтические инфракрасные лазеры относятся ко 2 классу опасности. К работе с лазерными установками допускается медицинский персонал, прошедший специальное обучение на курсах или на рабочем месте и инструктаж по технике безопасности. Персонал рекомендуется обучить методам оказания первой помощи при поражением лазерным излучением и электрическим током.