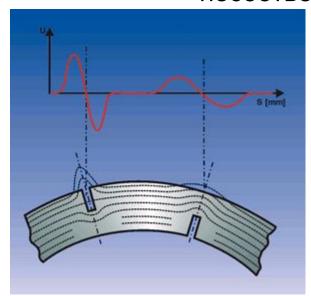
Магнитные методы неразрушающего контроля

Студент гр.4203 Шмаков Д.И.

Содержание

- 1. Основные понятия и средства МК
- 2. Типы приборов МК
- 3. Область применимости МК
- 4. Классификация методов МК
- 5. Обзор методов МК
- 6. Достоинства и недостатки МК


1.Основные понятия

Магнитный неразрушающий контроль (МНК) - НК, основанный на регистрации

магнитных полей рассеяния, возникающих над дефектами, или на определении магнитных

свойств объекта контроля.

Примечание. Дефект (по ГОСТ 15467-80) – каждое отдельное несоответствие продукции установленным требованиям.

Магнитная дефектоскопия – выявление дефектов типа нарушения сплошности.

материала объекта контроля методами МНК.

Магнитная дефектометрия – измерение геометрических размеров дефектов и

определение их местоположения в объекте контроля методами магнитного неразрушающего контроля.

Чувствительность – способность метода НК к обнаружению несплошностей.

Несплошность – нарушение сплошности, выраженное в виде естественных или

искусственных разрывов физической структуры материала.

Дефект – дефектность или несплошность, которая может быть обнаружена методами

неразрушающего контроля и которая необязательно является недопустимой.

Магнитный порошок – порошок из ферромагнетика, используемый в качестве индикатора магнитного поля рассеяния.

Магнитная паста – смесь, содержащая магнитный порошок, жидкую основу и, при необходимости, смачивающую антикоррозийную и другие добавки.

Магнитная суспензия – взвесь магнитного порошка в дисперсионной среде, содержащей смачивающие, антикоррозийные и, при необходимости, антивспенивающие, антикоагулирующие и другие добавки.

2. Типы приборов МК

Дефектоскоп – прибор, предназначенный для выявления дефектов типа нарушений сплошности материала объекта контроля и основанный на методе

МНК;

Толщиномер – прибор, предназначенный для измерения толщины объекта контроля или его покрытия и основанный на методе МНК;

Структуроскоп – прибор, предназначенный для определения физикомеханических

свойств или химического состава объекта контроля и основанный на методе МНК;

Ферритометр – прибор для измерения процентного содержания ферритной фазы в

структуре контролируемого объекта;

Анализатор концентрации суспензии – прибор для определения концентрации

магнитного порошка в магнитной суспензии.

Намагничивающее устройство;

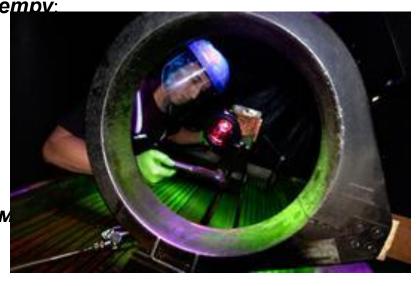
Размагничивающее устройство;

3. Область применимости МК

Магнитный вид контроля применяется для обнаружения нарушений сплошности

(трещин, немагнитных включений и др.дефектов) в поверхностных слоях деталей из ферромагнитных материалов и выявления ферромагнитных включений в деталях из неферромагнитных материалов.

Для обнаружения нарушений сплошности материала ферромагнитных (главным образом стальных) деталей. Магнитный метод применим для определения толщины немагнитных покрытий на ферромагнитной основе или в случае резкого различия магнитных свойств покрытия и основы.

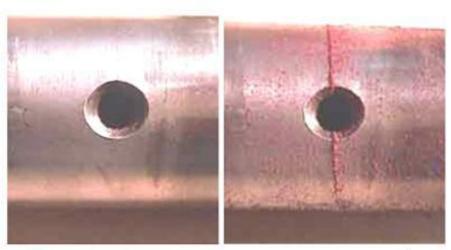

Магнитным методом могут быть определены толщины элементов конструкции из неферромагнитных материалов, если возможен одновременный доступ к соответствующим точкам поверхностей.

4.Классификация методов МК

- 1. По характеру взаимодействия физических полей с контролируемым объектом:
- магнитный.

2. По первичному информативному параметоу:

- корцитивной силы;
- намагниченности;
- остаточной индукции;
- магнитной проницаемости;
- остаточной индукции;
- -эффекта Баркгаузена.
- 3. По способу получения первичной информ
- магнитопорошковый;
- магнитографический;
- феррозондовый;
- индукционный;
- эффекта Холла;
- пондеромоторный;
- магниторезисторный.



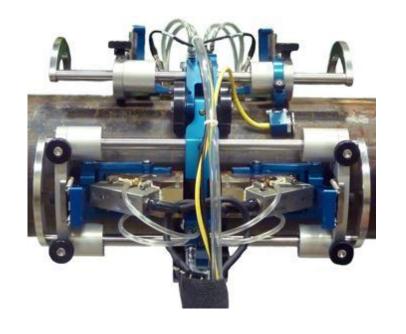
5.Обзор методов

- 1. Магнитопорошковый метод
- 2. Индукционный метод
- 3. Феррозондовый метод
- 4. Метод эффекта Холла
- 5. Магнитографический метод
- 6. Магниторезистивный метод
- 7. Пондеромоторный метод
- 8. Магнитополупроводниковый метод

Магнитопорошковый метод

Метод магнитного неразрушающего контроля, основанный на использовании в качестве индикатора магнитного порошка

Вид поверхности детали с трещиной до и после проведеия магнитопорошкового контроля сухим порошком бурого цвета.


Индукционный метод

Метод магнитного неразрушающего контроля, основанный на регистрации магнитных полей объекта контроля индукционными преобразователями

Феррозондовый метод

Метод магнитного неразрушающего контроля, основанный на регистрации магнитных полей объекта контроля феррозондовыми преобразователями

Метод эффекта Холла

Метод магнитного неразрушающего контроля, основанный на регистрации магнитных полей объекта контроля преобразователями Холла

Магнитографический метод

Метод магнитного неразрушающего контроля, основанный на записи магнитных полей объекта контроля на магнитный носитель с последующим воспроизведением сигнапограммы

Магниторезистивный метод

Метод магнитного неразрушающего контроля, основанный на регистрации магнитного поля объекта контроля магниторезистивными

преобр



Пондеромоторный метод

Метод магнитного неразрушающего контроля, основанный на пондеромоторном взаимодействии регистрируемого магнитного поля объекта контроля и магнитного поля постоянного

магнита, элект

током

Магнитополупроводниковый метод

Метод магнитного неразрушающего контроля, основанный на регистрации магнитного поля объекта контроля магнитополупроводниковыми приборами

5. Достоинства и недостатки

Достоинства:

- 1. Наглядность
- 2. высокая чувствительность
- 3 высокая производительность
- 4. универсальность (примерно 80 % всех подлежащих контролю деталей
- из ферромагнитных материалов проверяется именно этим методом).

Недостатки:

1. большая трудоемкость

(для повышения надежности и достоверности контроля требуется зачистка поверхности сварного соединения или даже снятие усиления сварного шва; необходимо выполнить намагничивание и размагничивание конструкции).

Спасибо за внимание!