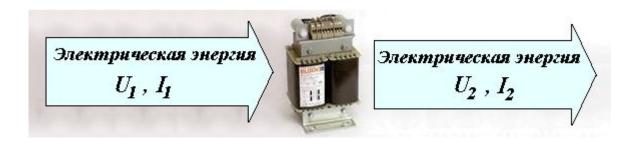
# Лекция 11

# II.

# Магнитные цепи и электромагнитные устройства

Трансформатор



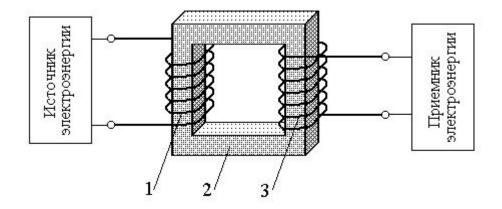

# Содержание

- 1. Основные понятия. Назначение, области применения трансформатора.
- 2. Устройство, принцип действия трансформатора.
- 3. Уравнения состояния трансформатора.
- 4. Особенности реального трансформатора.
- 5. Внешняя характеристика трансформатора.
- 6. Режимы работы трансформатора.

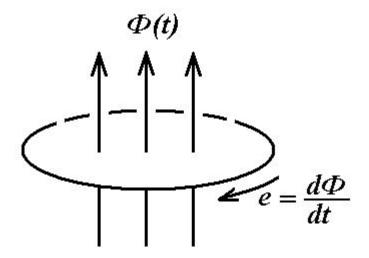
# 1. Основные понятия. Назначение, области применения трансформатора.

#### Трансформатор –

это статическое электромагнитное устройство, предназначенное для преобразования электрической энергии одного напряжения в электрическую энергию другого напряжения

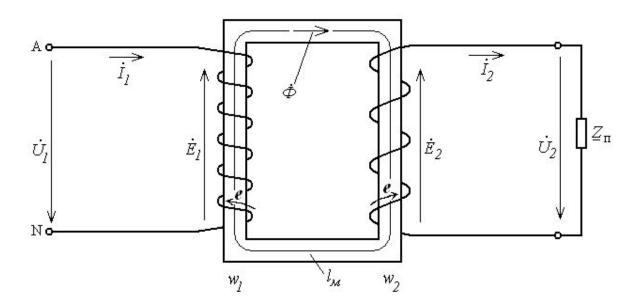



Силовые трансформаторы промышленных электрических сетей. Печные и сварочные трансформаторы. Измерительные трансформаторы Автотрансформаторы Силовые трансформаторы малой и средней мощности и др.




#### Основные элементы конструкции трансформатора

- 1 Первичная обмотка ( $w_{\scriptscriptstyle 1}$ )
- 2 Магнитопровод (ферромагнитный сердечник)
- 3 Вторичная обмотка ( $w_2$ )




#### Закон электромагнитной индукции Фарадея



ЭДС электромагнитной индукции **е** в контуре численно равна и противоположна по знаку скорости изменения магнитного потока, пронизывающего этот контур

Принцип действия (Идеальный трансформатор)



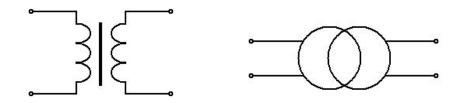
$$\begin{split} \dot{U}_{I} \rightarrow \dot{I}_{I} \rightarrow \dot{F} \rightarrow \dot{\Phi} \rightarrow \dot{e} = \frac{d\dot{\Phi}}{dt} & \stackrel{\dot{E}_{I} = \dot{e}w_{I}}{\searrow} \rightarrow \dot{U}_{I} = \dot{E}_{I} \\ & \stackrel{\dot{E}_{I} = \dot{e}w_{I}}{\searrow} \rightarrow \dot{U}_{I} = \dot{E}_{I} \\ & \stackrel{\dot{E}_{I} = \dot{e}w_{I}}{\searrow} \rightarrow \dot{U}_{I} = \dot{E}_{I} \\ & \stackrel{\dot{E}_{I} = \dot{e}w_{I}}{\searrow} \rightarrow \dot{U}_{I} = \dot{E}_{I} \\ & \stackrel{\dot{E}_{I} = \dot{e}w_{I}}{\searrow} \rightarrow \dot{U}_{I} = \dot{E}_{I} \\ & \stackrel{\dot{E}_{I} = \dot{e}w_{I}}{\searrow} \rightarrow \dot{U}_{I} = \dot{E}_{I} \\ & \stackrel{\dot{E}_{I} = \dot{e}w_{I}}{\searrow} \rightarrow \dot{U}_{I} = \dot{E}_{I} \\ & \stackrel{\dot{E}_{I} = \dot{e}w_{I}}{\searrow} \rightarrow \dot{U}_{I} = \dot{E}_{I} \\ & \stackrel{\dot{E}_{I} = \dot{e}w_{I}}{\searrow} \rightarrow \dot{U}_{I} = \dot{E}_{I} \\ & \stackrel{\dot{E}_{I} = \dot{e}w_{I}}{\searrow} \rightarrow \dot{U}_{I} = \dot{E}_{I} \\ & \stackrel{\dot{E}_{I} = \dot{e}w_{I}}{\searrow} \rightarrow \dot{U}_{I} = \dot{E}_{I} \\ & \stackrel{\dot{E}_{I} = \dot{e}w_{I}}{\searrow} \rightarrow \dot{U}_{I} = \dot{E}_{I} \\ & \stackrel{\dot{E}_{I} = \dot{e}w_{I}}{\searrow} \rightarrow \dot{U}_{I} = \dot{E}_{I} \\ & \stackrel{\dot{E}_{I} = \dot{e}w_{I}}{\searrow} \rightarrow \dot{U}_{I} = \dot{E}_{I} \\ & \stackrel{\dot{E}_{I} = \dot{e}w_{I}}{\searrow} \rightarrow \dot{U}_{I} = \dot{E}_{I} \\ & \stackrel{\dot{E}_{I} = \dot{e}w_{I}}{\searrow} \rightarrow \dot{U}_{I} = \dot{E}_{I} \\ & \stackrel{\dot{E}_{I} = \dot{e}w_{I}}{\searrow} \rightarrow \dot{U}_{I} = \dot{E}_{I} \\ & \stackrel{\dot{E}_{I} = \dot{e}w_{I}}{\searrow} \rightarrow \dot{U}_{I} = \dot{E}_{I} \\ & \stackrel{\dot{E}_{I} = \dot{e}w_{I}}{\searrow} \rightarrow \dot{U}_{I} = \dot{E}_{I} \\ & \stackrel{\dot{E}_{I} = \dot{e}w_{I}}{\searrow} \rightarrow \dot{U}_{I} = \dot{E}_{I} \\ & \stackrel{\dot{E}_{I} = \dot{e}w_{I}}{\searrow} \rightarrow \dot{U}_{I} = \dot{E}_{I} \\ & \stackrel{\dot{E}_{I} = \dot{e}w_{I}}{\searrow} \rightarrow \dot{U}_{I} = \dot{E}_{I} \\ & \stackrel{\dot{E}_{I} = \dot{e}w_{I}}{\searrow} \rightarrow \dot{U}_{I} = \dot{E}_{I} \\ & \stackrel{\dot{E}_{I} = \dot{e}w_{I}}{\searrow} \rightarrow \dot{U}_{I} = \dot{E}_{I} \\ & \stackrel{\dot{E}_{I} = \dot{e}w_{I}}{\searrow} \rightarrow \dot{U}_{I} = \dot{E}_{I} \\ & \stackrel{\dot{E}_{I} = \dot{e}w_{I}}{\searrow} \rightarrow \dot{U}_{I} = \dot{E}_{I} \\ & \stackrel{\dot{E}_{I} = \dot{e}w_{I}}{\searrow} \rightarrow \dot{U}_{I} = \dot{E}_{I} \\ & \stackrel{\dot{E}_{I} = \dot{e}w_{I}}{\searrow} \rightarrow \dot{U}_{I} = \dot{E}_{I} \\ & \stackrel{\dot{E}_{I} = \dot{e}w_{I}}{\searrow} \rightarrow \dot{U}_{I} = \dot{E}_{I} \\ & \stackrel{\dot{E}_{I} = \dot{e}w_{I}}{\searrow} \rightarrow \dot{U}_{I} = \dot{E}_{I} \\ & \stackrel{\dot{E}_{I} = \dot{e}w_{I}}{\searrow} \rightarrow \dot{U}_{I} = \dot{E}_{I} \\ & \stackrel{\dot{E}_{I} = \dot{e}w_{I}}{\searrow} \rightarrow \dot{U}_{I} = \dot{E}_{I} \\ & \stackrel{\dot{E}_{I} = \dot{e}w_{I}}{\searrow} \rightarrow \dot{U}_{I} = \dot{E}_{I} \\ & \stackrel{\dot{E}_{I} = \dot{e}w_{I}}{\searrow} \rightarrow \dot{U}_{I} = \dot{E}_{I} \\ & \stackrel{\dot{E}_{I} = \dot{e}w_{I}}{\searrow} \rightarrow \dot{U}_{I} = \dot{E}_{I} \\ & \stackrel{\dot{E}_{I} = \dot{e}w_{I}}{\searrow} \rightarrow \dot{U}_{I} \\ & \stackrel{\dot{E}_{I} = \dot{e}w_{I} \\ & \stackrel{\dot{E}_{I} = \dot{e}w_{I}}{\searrow} \rightarrow \dot{U}_{I} \\ & \stackrel{\dot{E}_{I} = \dot{e}w$$

Коэффициент трансформации

$$k_T = \frac{U_I}{U_2} = \frac{E_I}{E_2} = \frac{ew_I}{ew_2} = \frac{w_I}{w_2}$$

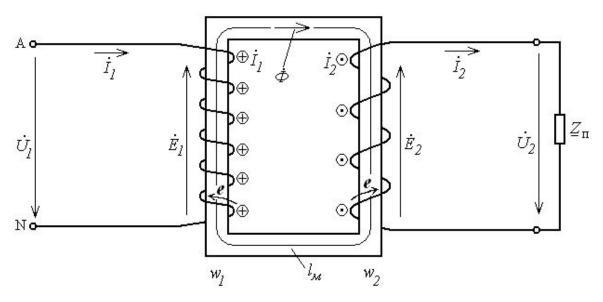
#### Коэффициент трансформации

$$k_T = U_1 / U_2 = w_1 / w_2$$
  $w_2 < w_1$ ;  $U_2 < U_1$ ;  $k_T > 1$  — понижающий трансформатор  $w_2 > w_1$ ;  $U_2 > U_1$ ;  $k_T < 1$  — повышающий трансформатор  $w_2 = w_1$ ;  $U_2 = U_1$ ;  $k_T = 1$  — разделительный трансформатор


#### Пример

Трансформатор, имеющий номинальное первичное напряжение  $U_{I + lom} = 220$  В, число витков первичной обмотки  $w_I = 1300$  витков и число витков вторичной обмотки  $w_2 = 213$  витков,

обладает коэффициентом трансформации  $k_T = 1300 / 213 = 6,1$  (понижающий трансформатор)

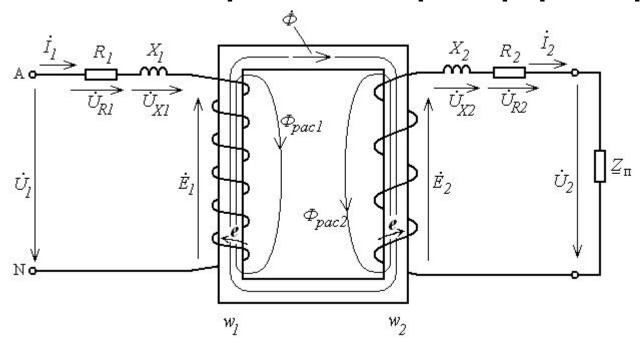

и создает вторичное напряжение  $U_2 = 220$  / 6,1 = 36B.

Условное обозначение трансформатора в схемах электрических цепей



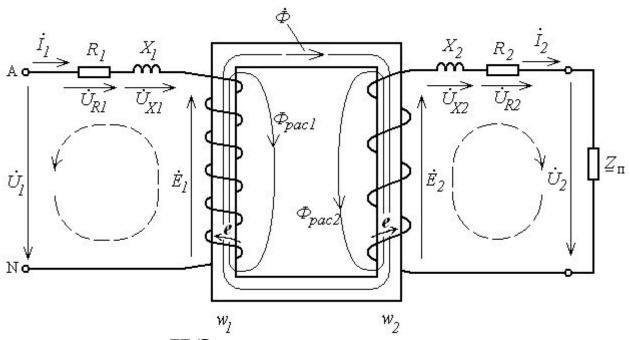
## 3. Уравнения состояния трансформатора.

Уравнение магнитного состояния трансформатора




Закон полного тока для магнитной цепи трансформатора:  $H_M$ 

исформатора: 
$$M_{\mathcal{M}} = I_{1}w_{1} - I_{2}w_{2}$$
;  $H = \frac{B}{\mu_{0}} = \frac{\Phi}{\mu_{0} \cdot S_{M}}$ ;  $\Phi = U_{1} / (4,44fw_{1})$ 
Холостой ход:  $M_{\mathcal{M}} = I_{0}w_{1}$ 


$$\vec{L}_{1} = \vec{L}_{0} + \vec{L}_{2} \left(\frac{w_{2}}{w_{1}}\right); \qquad \vec{L}_{1} = \vec{L}_{0} + \vec{L}_{2} / k_{T}$$

## 4. Особенности реального трансформатора.



- 1. Поток рассеяния первичной обмотки  $m{\Phi}_{pac1} 
  ightarrow E_{pac1} 
  ightarrow X_1$  Поток рассеяния вторичной обмотки  $m{\Phi}_{pac2} 
  ightarrow E_{pac2} 
  ightarrow X_2$
- 2. Проводники обмоток обладают электрическим сопротивлением  $\to (R_1 \ \text{и} \ R_2)$

#### Уравнения электрического состояния



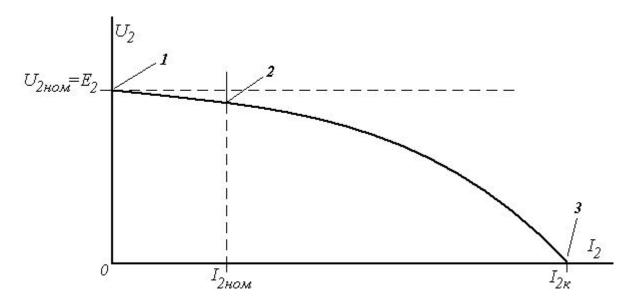
#### II Закон

#### Уравнения электрического и магнитного состояния трансформатора

$$\mathbf{L}_{1} = \mathbf{E}_{1} + \mathbf{L}_{1}(R_{1} + jX_{1})$$

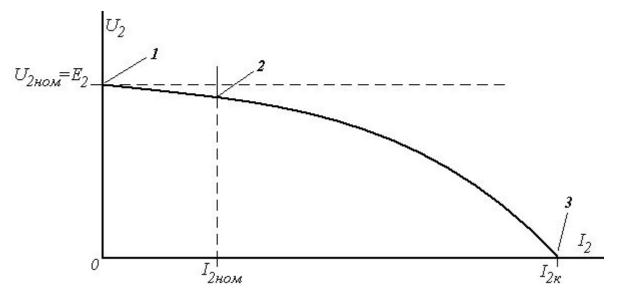
$$\mathbf{L}_{2} = \mathbf{E}_{2} - \mathbf{L}_{2}(R_{2} + jX_{2})$$

$$\mathbf{L}_{1} = \mathbf{L}_{1} + \mathbf{L}_{2}/k_{T}$$

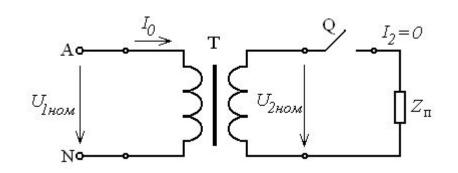

# 5. Внешняя характеристика трансформатора.

Вторичное напряжение трансформатора ( $U_2$ ) зависит от мощности нагрузки ( $P_2 = U_2 \, I_2 \, cos \phi_2$ )

 $U_2 = f(I_2)$  - внешняя характеристика трансформатора

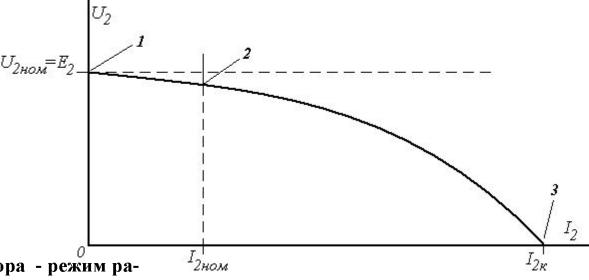

Из уравнения электрического состояния:  $U_2 = E_2 - I_2(R_2 + jX^2)$ 

C увеличением нагрузки ( $I_2$ ) вторичное напряжение трансформатора ( $U_2$ ) уменьшается




# 6. Режимы работы трансформатора

Холостой ход

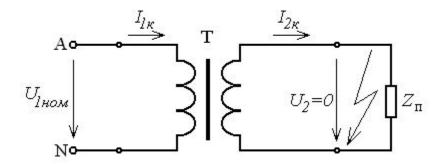



Холостой ход трансформатора — режим работы при  $I_2 = \theta$  (Точка 1)  $U_2 = U_{2 \mu o m} = E_2$  Ток холостого хода трансформатора  $I_1 = I_{\theta}$  (от 2 до 5 %)



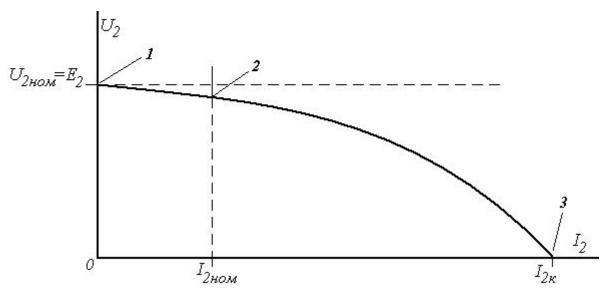
# 6. Режимы работы трансформатора (продолжение)

#### Короткое замыкание




Короткое замыкание трансформатора - режим работы при замкнутых между собой зажимах вторичной обмотки (Точка 3).  $U_2 = 0$ .

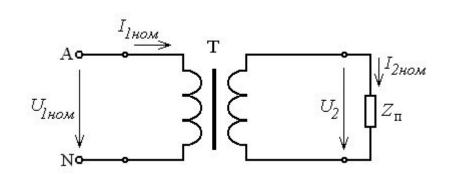
Токи обмоток  $I_{1\kappa}$  и  $I_{2\kappa}$  во много раз превышают номинальные значения.


Ток первичной обмотки называется током коромкого замыкания трансформатора  $I_{\kappa}$ 

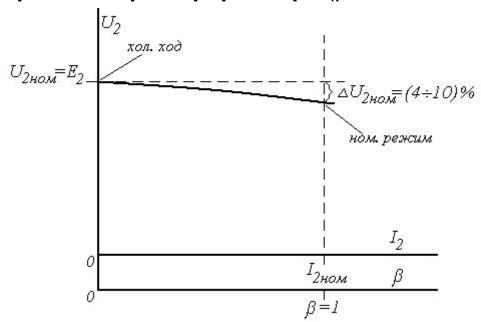
Короткое замыкание — аварийный режим, возникающий вследствие неисправностей в электрической цепи приемника электроэнергии, приводит к разрушению устройства.



# 6. Режимы работы трансформатора (продолжение)


Номинальный режим




Номинальный режим работы трансформатора:

$$I_2 = I_{2ном}$$
;  $I_1 = I_{1ном}$  (Точка 2)

Рабочий диапазон режимов работы трансформатора определяется участком 1–2



#### Внешняя характеристика трансформатора (рабочий диапазон)



#### Коэффициент нагрузки $\beta$ характеризует величину нагрузки:

$$\beta = I_2 / I_{2\mu\nu}$$

Холостой ход:  $I_2 = 0$ ,  $\beta = 0$ 

Номинальный режим работы:  $I_2 = I_{2hom}$ ,  $\beta = 1$ 

Внешняя характеристика  $U_2 = f(I_2)$ ;  $U_2 = f(\beta)$ 

Изменение вторичного напряжения:  $\Delta U_2 = U_{2\text{ном}} - U_2$ 

В номинальном режиме  $\Delta U_{2$ ном составляет от 4 до 10%

#### Заключение

- 1. Трансформатор это статическое электромагнитное устройство, предназначенное для преобразования электрической энергии одного напряжения в электрическую энергию другого напряжения.
- 2. В основе работы трансформатора лежит явление электромагнитной индукции.
- 3. Основой устройства трансформатора является магнитная цепь, которая представляет из себя магнитопровод с электрическими обмотками.
- 4. Соотношение по величине между первичным и вторичным напряжениями называется коэффициентом трансформации. Коэффициент трансформации идеального трансформатора определяется соотношением числа витков первичной и вторичной обмоток

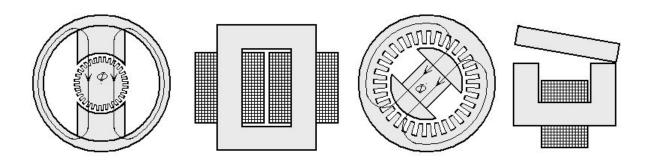
$$k_{\rm T} = U_{1}/U_{2} = w_{1}/w_{2}$$

#### Заключение

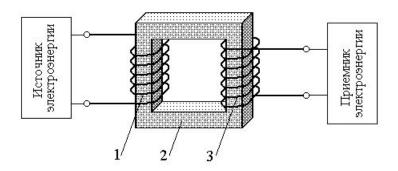
- 5. Для анализа реального трансформатора следует учитывать дополнительные особенности его работы, существенно влияющие на его характеристики. Первая особенность наличие дополнительных магнитных потоков рассеяния. Вторая особенность существенное влияние активного сопротивления обмоток трансформатора.
- 6. Для математического описания режимов работы трансформатора используют *уравнения электрического и магнитного состояния*.

#### Заключение

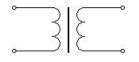
- 7. Вторичное напряжение реального трансформатора зависит от величины его нагрузки. Эта зависимость называется внешней характеристикой трансформатора. С увеличением вторичного тока (увеличением нагрузки трансформатора) вторичное напряжение уменьшается.
- 8. *Холостой ход* трансформатора режим работы при отключенном приемнике. При этом вторичное напряжение определяется величиной ЭДС и принимается за номинальное вторичное напряжение.


$$\mathbf{U}_{2\text{HOM}} = \mathbf{E}_2$$

- 9. Короткое замыкание аварийный режим работы при замкнутых между собой зажимах вторичной обмотки. Ток короткого замыкания существенно превышает допустимое значение.
- 10. Номинальный режим режим работы при значении тока, равном номинальному, определяющему допустимый нагрев трансформатора.

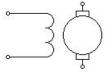

#### <u>Что такое трансформатор?</u>

- Электромагнитное устройство, преобразующее электрическую энергию одного напряжения в электрическую энергию другого напряжения.
- Электромагнитное устройство, преобразующее электрическую энергию переменного тока в электрическую энергию постоянного тока.
- Электромагнитное устройство, преобразующее электрическую энергию в механическую, или наоборот.
- Электромагнитное устройство, преобразующее электрическую энергию в тепловую.


#### <u>Укажите магнитную цепь трансформатора:</u>



# <u>Назовите основные элементы конструкции</u> <u>трансформатора</u>




# <u>Условное обозначение</u> <u>трансформатора в схемах :</u>









#### Коэффициент трансформации - это:

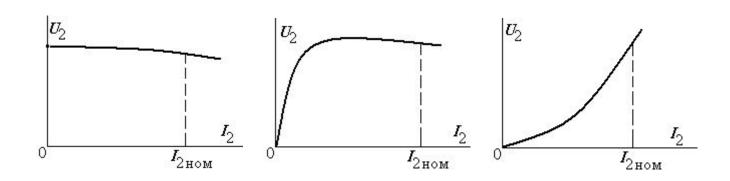
- Отношение номинального первичного напряжения к номинальному вторичному.
- Отношение номинального вторичного напряжения к номинальному первичному.
- Отношение активной мощности приемника на выходе трансформатора к активной мощности потребляемой трансформатором.
- Отношение потерь мощности в трансформаторе к потребляемой активной мощности.

Трансформатор имеет следующие параметры:  $U_{1\text{ном}} = 220 \text{ B}$ ,  $w_1 = 2000 \text{ витков}$ ,  $w_2 = 200 \text{ витков}$ . Какова величина номинального вторичного напряжения  $U_{2\text{ном}}$  и коэффициент трансформации  $K_{\tau}$ ?

KT = 10; U2HOM = 22 B

KT = 0,1; U2HOM = 22 B

KT = 10; U2HOM = 2200 B


KT = 200; U2hom = 1,1 B

KT = 10; U2HOM = 0,11 B

# <u>Что пакое внешняя характеристика трансформатора?</u> нагрузки.

- Зависимость кпд трансформатора от величины нагрузки.
- Номинальное напряжение и коэффициент трансформации.
- Коэффициент трансформации и номинальная

#### Указаты врафик внешней характеристики трансформатора



#### <u>Что такое холостой ход трансформатора?</u>

#### <u>Что такое короткое замыкание трансформатора?</u>

- Режим работы трансформатора при разомкнутой вторичной цепи.
- Режим работы трансформатора при замкнутых между собой выводах вторичной обмотки.
- Режим работы, при котором первичная обмотка отключена от источника электроэнергии.
- Аварийный режим, возникающий при обрыве цепи первичной обмотки.