МАТЕМАТИЧЕСКИЕ МОДЕЛИ РАСПРОСТРАНЕНИЯ ПРИМЕСЕЙ В ВОЗДУХЕ ОТ ТОЧЕЧНЫХ ИСТОЧНИКОВ

Для прогноза качества воздуха используется большое разнообразие методик – от простейших до комплексных.

На данный момент большинство из них направлены на проведение краткосрочного — от 1 до 3 дней — прогнозирования концентрации загрязняющих веществ.

Методики прогнозирования загрязнения воздуха делятся на **три** большие категории:

I. Климатологические II. Статистические III. Трехмерные (3-D) модели

I. Климатологические

- Основаны на взаимосвязи повышенных уровней загрязнения с определенными метеорологическими условиями.
- Используются для прогнозирования превышения предельных концентраций веществ в окружающей среде.
- Преимущество в том, что они достаточно простые и недорогие в применении.

II. Статистические

• Взаимосвязь между определенными метеорологическими параметрами и состоянием воздуха может быть определена количественно, используя множество статистических методик.

• Для прогнозирования они фактически являются наиболее

Три используемых статистических подхода

1. Классификации и дерево регресса (CART).

Методика основана на использовании идентификации тех переменных (метеорологических или отражающих состояние воздуха), которые наиболее тесно связаны с уровнями загрязнения окружающей среды.

Эти переменные используются для предсказания будущих уровней загрязнения, по данным о текущем состоянии воздуха и прогноза погоды.

Три используемых статистических подхода

подхода 2. Регрессионный анализ.

Взаимосвязь между уровнем загрязнения и метеорологическими и аэрометрическими переменными может быть определена количественно с помощью анализа наборов ретроспективних данных, используя стандартные статистические пакеты анализа.

Результирующее множественное линейное регрессионное уравнение может использоваться для прогнозирования уровней загрязнения.

Три используемых статистических подхода

3. Искусственные нейронные сети (распознавание образов)

Анализ ретроспективных данных, чтобы идентифицировать атмосферные параметры, которые влияют на качество воздуха и количественно оценить это влияние с помощью приложений, использующих такой метод адаптивного обучения и распознавания образов, как нейронные сети.

Являются болем сложными, чем климатические, но достаточно просты в реализации и использовании, требуют небольших вычислительных ресурсов и незначительных специальных знаний.

III. Трехмерные (3-D) модели

• модели состояния воздуха стремятся математически представить все важнейшие процессы, влияющие на уровень загрязнения окружающей среды.

• Эти модели фактически состоят из **нескольких подмоделей,** которые взаимодействуют при моделировании выброса, переноса и преобразования загрязнения воздуха.

Примеры подмоделей:

• Модели выбросов.

Моделируют во времени пространственное распределение выбросов примеси загрязняющего вещества, и/или (в случае вторичных загрязнителей) предшествующих выбросов, вызванные антропогенними или естественными источниками.

Примеры подмоделей:

• Метеорологические модели.

Прогнозируют метеорологические условия, влияние химических факторов (солнечной активности, температуры, влажности и т.д.), излучений (например, температура), и осадков, которые определяют перенос и смешивание загрязняющих веществ.

Примеры подмоделей:

• Химические модели. Эти модели используют уровни основных параметров химической кинетики, спектроскопические свойства и термодинамические соотношения для моделирования преобразования первичного загрязнения во вторичное загрязнение, учитывая свойства аэрозолей.

В зависимости от метода, который используется для моделирования распределения концентрации загрязнения с течением времени,

трехмерные модели качества воздуха делятся на ряд моделей, использующих математические алгоритмы.

Алгоритм Гауссовой модели.

- Алгоритм Гауссовой модели является наиболее распространенным в моделировании анализа воздушной дисперсии.
- Он основан на предположении, что загрязнитель будет расходиться в соответствии с нормальным распределением статистики.

Общее Гауссовское уравнение

$$\frac{dC}{dt} + U\frac{dC}{dx} = \frac{d}{dy}\left(K_y\frac{dC}{dy}\right) + \left(K_z\frac{dC}{dz}\right) + S$$

где: x - координата от источника вдоль направления ветра;

- у координата от источника перпендикулярно направлению ветра;
- z вертикальная координата, отсчитываемая от почвы;
- C(x,y,z) средняя концентрация дисперсного вещества при (x, y,z) точки;
- Ку, Кz распространение турбулентности по направлениям осей у и z;
- U средняя скорость ветра вдоль оси х.

При реализации модели могут быть сделаны некоторые упрощения:

- концентрации загрязняющих веществ не влияют на разрежённый поток (пассивная дисперсия);
- молекулярная диффузия и продольная диффузия (вдоль направления ветра) незначительны;
- турбулентные потоки являються линейными;
- боковая средняя скорость, V и вертикальная скорость ветра W равны нулю,

Алгоритм модели Эйлера.

Модель Эйлера решает уравнение сохранения массы для данного загрязнителя.

$$\frac{\partial (C_t)}{\partial t} = -\overline{U} \forall (C_t - \forall (C'_t) + D \forall^2 < C_t > + < S_{t>,}$$

$$U = \overline{U} + U'$$

где:

U – главный вектор ветра U (x, y, z);

 \overline{U} - средний вектор области ветра;

U' - вектор колебаний области ветра;

С - концентрация загрязняющего вещества;

<c> - средняя концентрация загрязняющего вещества;

С' - концентрация загрязняющего вещества в колебании;

D — молекулярный коэффициент диффузии; S_t - начальный элемент.

Модели Эйлера

используют фиксированную решетку (вертикальную и горизонтальную) и решают соответствующие химические уравнения одновременно во всех ячейках решетки, при этом учитывая

обмен загрязняющими веществами между ячейками.

Алгоритм модели Лагранжа.

Алгоритм модели Лагранжа предсказывает дисперсию загрязняющего вещества, зная изменение базовой решетки.

Это изменение базовой решетки зависит от того, что направление ветра или вектор поля ветра попадает на направление загрязняющего облака.

$$< c(r,t) \ge \iint p(r,t|r',t') S(r',t') dr' dt'$$

где

< c(r,t) > - является средней концентрацией загрязняющего вещества в месте r и времени t;

S(r',t') - определяет источник выброса;

 $p(r,t|r^{'},t^{'})$ - функция вероятности перехода от $r^{'}$ места и времени $t^{'}$ к месту r и времени t.

• Модель Лагранжа описывает перенос отдельных воздушных потоков с течением времени под действием атмосферних полей и распространение примесей загрязняющего вещества.

Алгоритм модели Ханна.

• Оценка самой высокой концентрации загрязняющего вещества испускаемого от точечного источника по направлению ветра:

$$C_{WC} = \frac{10^8 \, Q}{U H_{WC} W_{WC}}$$

где: Q - скорость выброса газа или частицы/ порошка; C_{WC} – наибольшая концентрация;

 W_{WC} — наибольшая широта загрязняющего облака;

 \mathbf{H}_{WC} – наибольшая глубина загрязняющего облака.

Алгоритм Вох – модели.

Осадок воздуха имеет форму коробки. Воздух внутри коробки имеет однородную концентрацию.

$$\frac{dCV}{dt} = QA + uC_{in}WH - uCWH$$

где:

Q – связь выбросов загрязняющих веществ на ед. пов-сти;

С - концентрация однородных типов внутри осадка;

V – объем, описанный коробкой;

С_{іп} - конц-я вида загрязнения, который попадает в осадок;

A – горизонтальная поверхность коробки (L x W);

L – длина коробки; W – ширина коробки;

u – скоростьть ветра, действ-я перпенд-но на коробку;

Н – висота переменнявания

Алгоритм стохастической модели

базируется на полуэмпирических или статистических методах и ориентирован на проведение анализа соотношения между качеством атмосферного воздуха и измерениями атмосферних параметров или на прогнозировании случав повышенного загрязнения воздуха.

Алгоритм рецепторной модели

рассматривает измеренные концентрации загрязнителей в рецепторной точке и оценивает процентный вклад различных источников в эту концентрацию

Классификация моделей загрязнения атмосферного воздуха

-модели рассеивания примесей в атмосфере;

- модели загрязнения атмосферного воздуха. Модели рассеивания атмосферных примесей могут быть использованы для:

- □ определения соотношений источник рецептор;
- определения вклада различных источников в суммарные концентрации;

Модели рассеивания атмосферных примесей могут быть использованы для:

- оценки пространственного распределения концентрации и экспозиции населения;
- оптимизации стратегий снижения объема выбросов и анализа сценариев, связанных с выбросами;

Модели рассеивания атмосферных примесей могут быть использованы для:

- прогнозирования изменения концентраций загрязнителей во времени;
- анализа репрезентативности станций мониторинга;
- □ использования моделей как инструментов научных исследований.

• Для применения моделей следует располагать метеорологической и географической информацией, а также данными об источниках загрязнения и выбросах.

Классификация моделей рассеивания,

описывающих процессы турбулентной диффузии в атмосфере

1. Эйлеровы модели, решают уравнение сохранения массы для определенного загрязнителя

•

Классификация моделей рассеивания, описывающих процессы турбулентной диффузии в атмосфере

2. Гауссовы модели, в соответствии с которыми, распределение концентраций характеризуется как гауссовское горизонтальном и вертикальном направлениях.

Гауссовская модель чаще всего используется для прогнозирования рассеяния:

• непрерывных, плавучих выбросов загрязнения воздуха, которые начинаются от уровня земли или надземными источниками.

• прерывистых выбросов загрязнения воздуха (слоеные модели)

Классификация моделей рассеивания, описывающих процессы турбулентной диффузии в атмосфере

• 3. Лагранжевы модели, в которых либо отслеживаются процессы в движущихся массах воздуха, либо используются условные частицы для имитации процессов рассеивания

В основе моделей рассеивания лежат модели Эйлера, Лагранжа, Гаусса

К моделям загрязнения атмосферного воздуха относятся:

- □ полуэмпирические модели,базирующиеся, главным образом, на эмпирической параметризации;
 - стохастические модели;
 - рецепторные модели

Классификация по масштабам атмосферних процессов

макромасштаб
(масштаб протяженности > 1000 км),
при котором атмосферный поток
ассоциируется
с синоптическими явлениями;

Классификация по масштабам атмосферних процессов

• мезомасштаб

(1 км < протяженности < 1000 км),при котором воздушный поток отчасти находится в зависимости от синоптических явлений и отчасти от гидродинамических эффектов (например, от шероховатости подстилающей поверхности и препятствий) и от неоднородностей энергетического баланса;

Классификация по масштабам атмосферних процессов

• микромасштаб

(масштаб протяженности < 1 км),

при котором воздушный поток в основном зависит от характеристик поверхности.

Классификация по масштабам времени

- локальные (менее нескольких минут),
- региональные (несколько часов),
- континентальные (несколько дней)
- глобальные (недели или более).

• Специализация моделей проявляется в их тесной привязке к конкретным местностям, погодным условиям, масштабам и т. п. факторам.

• Интегральность проявляется в том, что современные модели представляют собой систему подмоделей, предназначенных для решения узких задач: моделирование турбулентности, осаждения, диффузии и т. д.