Математические софизмы

Авторы проекта:

Костромина Елизавета, Мочалова Ксения, ученицы 9«А» класса, МОУ ООШ № 11.

Руководитель проекта:

Е.Б. Бодрягина, учитель математики МОУ ООШ № *11*.

Цель проекта:

Значение математических софизмов в развитии логического мышления школьников.

Задачи проекта:

- Познакомиться с понятием софизм.
- Рассмотреть примеры математических софизмов.
- Провести исследование по школе среди учащихся 6-х,
 7-х и 9-х классов.
- Проанализировать полученные результаты.

Используемые методы:

- Изучение литературы
- Решение математических задач
- Сбор и обработка данных с помощью информационных технологий
- Создание презентации

Что такое софизм

Правильно понятая ошибка – это путь к открытию И.П. Павлов.

Софизм (от греч. sophisma – уловка, выдумка, головоломка), формально кажущееся правильным, но по существу ложное умозаключение, основанное на преднамеренно неправильном подборе исходных положений.

Виды математических софизмов:

- Арифметические софизмы
- Алгебраические софизмы
- Геометрические софизмы

Примеры алгебраических софизмов

Пример 1.

1 р. = 10 000 к.

Возьмём верное равенство:

1 р. = 100 к.

Возведём его по частям в квадрат.

Мы получим: 1 р. = 10 000 к.

Вопрос: В чём ошибка?

Ответ:

Возведение в квадрат величин не имеет смысла. В квадрат возводятся только числа.

Пример 2

5=6

Попытаемся доказать, что 5 = 6. С этой целью возьмём числовое тождество:

$$35 + 10 - 45 = 42 + 12 - 54$$
.

Вынесем общие множители левой и правой частей за скобки.

Получим:

$$5(7+2-9)=6(7+2-9).$$

Разделим обе части этого равенства на общий множитель (заключённый в скобки).

Получаем 5=6

Вопрос: В чём ошибка?

Ответ:

Общий множитель (7 + 2 – 9) равен 0, а делить на 0 нельзя.

Примеры геометрических софизмов

Загадочное исчезновение

У нас есть произвольный прямоугольник, на котором начерчено 13 одинаковых линий на равном расстоянии друг от друга, так, как показано на рис. 1.

Теперь «разрежем» прямоугольник прямой MN, проходящей через

верхний конец первой и нижний конец последней линии. Сдвигаем обе половины вдоль по этой линии и замечаем, что линий вместо 13 стало 12.

Одна линия исчезла бесследно.

Вопрос: Куда исчезла 13-я линия?

Ответ: 13-я линия удлинила каждую из своей длины.

«Новое доказательство» теоремы Пифагора

Возьмём прямоугольный треугольник с катетами а и b, гипотенузой

с и острым углом α, противолежащим катету а.

Имеем: $a = c \sin \alpha$, $b = c \cos \alpha$, откуда $a^2 = c^2 \sin^2 \alpha$, $b^2 = c^2 \cos^2 \alpha$.

Просуммировав по частям эти равенства, получаем:

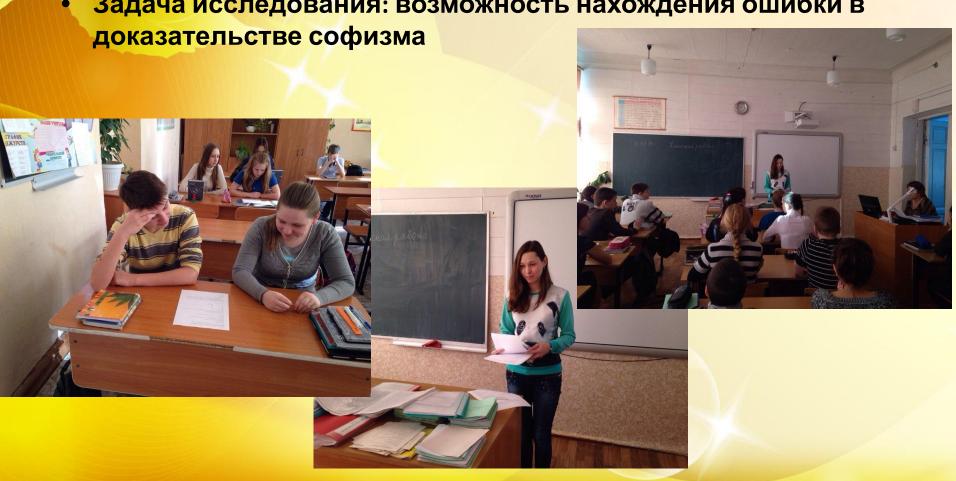
$$a^{2} + b^{2} = c^{2} (\sin^{2} \alpha + \cos^{2} \alpha).$$

Ho $\sin^2 \alpha + \cos^2 \alpha = 1$, и поэтому $a^2 + b^2 = c^2$.

Вопрос: В чём ошибка?

Ответ: Ошибки здесь нет. Но

формула $\sin^2 \alpha + \cos^2 \alpha = 1$ сама


выводится

<mark>на осн</mark>ов<mark>ании теоремы Пифагора.</mark>

- **Тема исследования «Нахождение ошибки в доказательстве** софизма»
- Метод исследования эксперимент
- Участники исследования учащиеся 6,7,9 классов школы

Задача исследования: возможность нахождения ошибки в

Нахождение ошибки в доказательстве софизмов

Алгебраические софизмы

- Пример 1.1 р. = 10 000 к.
- <u>Пример 2.5 = 6</u>
- \square <u>Pumep 3.2 + 2 = 5</u>
- Пример 4.Любое число равно его половине
- Пример 5.Расстояние от Земли до Солнца равно толщине волоска
- Пример 6.Любое число = 0

Геометрические софизмы

- Пример 1.Загадочное исчезновение.
- Пример 2.Земля и апельсин .
- Пример 3. Два перпендикуляра.
- <u>Пример 4.«Новое доказательство»</u> <u>теоремы Пифагора.</u>

Результат исследования

Основные ошибки в софизмах

- •деление на 0;
- •неправильные выводы из равенства дробей;
- •неправильное извлечение квадратного корня из квадрата выражения;
- нарушения правил действия с именованными величинами;
- •путаница с понятиями "равенства" и "эквивалентность" в отношении множеств;
- •проведение преобразований над математическими объектами, не имеющими смысла;
- •неравносильный переход от одного неравенства к другому;
- выводы и вычисления по неверно построенным чертежам;
- •ошибки, возникающие при операциях с бесконечными рядами и предельным переходом.

Заключение

О математических софизмах можно говорить бесконечно много, как и о математике в целом. Изо дня в день рождаются новые парадоксы. Софизмы есть смесь философии и математики, которая повышает интерес, помогает развивать логику и искать ошибку в рассуждениях.

Источники

- •http://pptcloud.ru/matematika/matematicheskie-sofizmy.html
- •http://anadra.ru/sitemath/
- •<u>https://ru.wikipedia.org/wiki/%D1%EE%F4%E8%E7%EC</u>