Математика. Лекция 10.

ПРОИЗВОДНАЯ ФУНКЦИИ.

Определение производной.

Рассмотрим функцию y = f(x), определенную в некоторой окрестности точки x. Пусть аргумент x получил приращение Δx , тогда функция получит приращение $\Delta y = f(x + \Delta x) - f(x)$.

Определение. Производной функции f(x) в точке x называется предел отношения приращения функции к приращению аргумента при $\Delta x \to 0$

$$f'(x) = \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x},$$

если этот предел существует.

Обозначения производной: $f'(x), y', y'_x, \frac{dy}{dx}$.

Если производная существует во всех точках некоторого промежутка (a,b), то её можно рассматривать как новую функцию f'(x). Операция нахождения производной от функции f(x) называется дифференцированием этой функции.

Теорема. Если функция y = f(x) имеет в некоторой точке x_0 производную, то она в этой точке непрерывна.

Обратная теорема неверна: непрерывная функция может не иметь производной. В качестве примера рассмотрим функцию

$$y = |x| = \begin{cases} x, ecnu \ x \ge 0 \\ -x, ecnu \ x < 0 \end{cases}$$

Эта функция непрерывная. Докажем, что она не имеет производной в точке x=0. Действительно, в точке x=0 имеем

$$\frac{\Delta y}{\Delta x} = \frac{f(0 + \Delta x) - f(0)}{\Delta x} = \frac{|0 + \Delta x| - |0|}{\Delta x} = \frac{|\Delta x|}{\Delta x} = \begin{cases} 1, ecnu \ \Delta x > 0, \\ -1, ecnu \ \Delta x < 0. \end{cases}$$

Отсюда следует, что $\lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x}$ не существует, т.е. функция y=|x| не имеет производной в точке x=0 .

Таблица производных

Запишем формулы производных основных элементарных функций.

1.
$$C' = 0$$
.

2.
$$(x^a)' = ax^{a-1}$$
; в частности $x' = 1$,

$$\left(\sqrt{x}\right)' = \frac{1}{2\sqrt{x}}, \left(\frac{1}{x}\right)' = -\frac{1}{x^2}.$$

3.
$$(a^x)' = a^x \ln a$$
, $(e^x)' = e^x$.

4.
$$(\log_a x)' = \frac{1}{x \ln a}$$
, $(\ln x)' = \frac{1}{x}$.

$$5. (\sin x)' = \cos x.$$

6.
$$(\cos x)' = -\sin x$$
.

$$7. \quad (tgx)' = \frac{1}{\cos^2 x}.$$

8.
$$(ctgx)' = -\frac{1}{\sin^2 x}$$
.

9.
$$(\arcsin x)' = \frac{1}{\sqrt{1-x^2}}$$
 при $|x| < 1$.

10.
$$(\arccos x)' = -\frac{1}{\sqrt{1-x^2}}$$
 при $|x| < 1$.

11.
$$(arctgx)' = \frac{1}{1+x^2}$$
.

12.
$$(arcctgx)' = -\frac{1}{1+x^2}$$
.

Вывод некоторых табличных производных.

- а) Пусть $y = a^x$, где a > 0, $a \ne 1$.
- Тогда приращение функции $\Delta y = a^{x+\Delta x} a^x = a^x (a^{\Delta x} 1)$.
- Используя определение, найдем производную

$$y' = \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = \lim_{\Delta x \to 0} \frac{a^x (a^{\Delta x} - 1)}{\Delta x} = \lim_{\Delta x \to 0} \frac{a^x \cdot \Delta x \ln a}{\Delta x} = a^x \ln a$$

(т.к. $a^{\Delta x} - 1 \sim \Delta x \ln a$ при $\Delta x \to 0$ по таблице эквивалентных бесконечно малых).

Вывод некоторых табличных производных.

б) Пусть $y = \log_a x$, где $a > 0, a \ne 1$.

Тогда для любого x>0 приращение функции

$$\Delta y = \log_a(x + \Delta x) - \log_a x = \log_a \frac{x + \Delta x}{x} = \log_a \left(1 + \frac{\Delta x}{x}\right).$$

Используя определение, вычислим производную:

$$y' = \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = \lim_{\Delta x \to 0} \frac{\log_a \left(1 + \frac{\Delta x}{x}\right)}{\Delta x} = \lim_{\Delta x \to 0} \frac{\Delta x}{\Delta x \cdot x \cdot \ln a} = \frac{1}{x \ln a},$$

 $(m.\kappa. \log_a \left(1 + \frac{\Delta x}{x}\right) \sim \frac{\Delta x}{x \ln a}$ при $\Delta x \rightarrow 0$ по таблице эквивалентных бесконечно малых).

Вывод некоторых табличных производных.

в) Пусть $y = \sin x$.

Тогда
$$\Delta y = \sin(x + \Delta x) - \sin x = 2\sin\frac{\Delta x}{2} \cdot \cos(x + \frac{\Delta x}{2})$$
.

По определению найдем производную

$$y' = \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = \lim_{\Delta x \to 0} \frac{2 \sin \frac{\Delta x}{2} \cdot \cos \left(x + \frac{\Delta x}{2}\right)}{\Delta x} =$$

$$= \lim_{\Delta x \to 0} \frac{2 \cdot \frac{\Delta x}{2} \cdot \cos\left(x + \frac{\Delta x}{2}\right)}{\Delta x} = \cos x,$$

(т.к. $\sin \frac{\Delta x}{2} \sim \frac{\Delta x}{2}$ при $\Delta x \rightarrow 0$ по таблице эквивалентных бесконечно малых).

Производная суммы, произведения и частного функций.

Теорема. Если функции u(x) и v(x) имеют производные в точке x_0 , то в этой точке имеют производные их сумма, разность, произведение и частное (при условии, что частное имеет знаменатель $v(x_0)\neq 0$), причем справедливы следующие формулы:

$$(u \pm v)' = u' \pm v';$$

$$(uv)' = u'v + uv';$$

$$\left(\frac{u}{v}\right)' = \frac{u'v - uv'}{v^2}.$$

Пример . Найти производную функции $y = (5 \arctan x + 3^x)(\log_2 x - \cos x)$.

Решение. По формуле производной произведения получим:

$$y' = (5 \arctan x + 3^{x})'(\log_{2} x - \cos x) + (5 \arctan x + 3^{x})(\log_{2} x - \cos x)' =$$

$$= \left(\frac{5}{1 + x^{2}} + 3^{x} \ln 3\right) \left(\log_{2} x - \cos x\right) + (5 \arctan x + 3^{x}) \left(\frac{1}{x \ln 2} + \sin x\right).$$

Пример . Найти производную функции $y = \frac{x^2 + x - 1}{10^x}$.

Решение.

По формуле производной частного получим:

$$y' = \left(\frac{x^2 + x - 1}{10^x}\right)' = \frac{(x^2 + x - 1)' \cdot 10^x - (x^2 + x - 1) \cdot (10^x)'}{(10^x)^2} = \frac{(2x + 1) \cdot 10^x - (x^2 + x - 1) \cdot 10^x \ln 10}{10^{2x}}.$$

Производная сложной функции.

Теорема. Пусть функция u=u(x) имеет производную в точке x, а функция y=f(u) имеет производную в соответствующей точке u=u(x). Тогда сложная функция y=f(u(x)) имеет производную в точке x, которая находится по формуле:

$$y_x' = f'(u) \cdot u'(x).$$

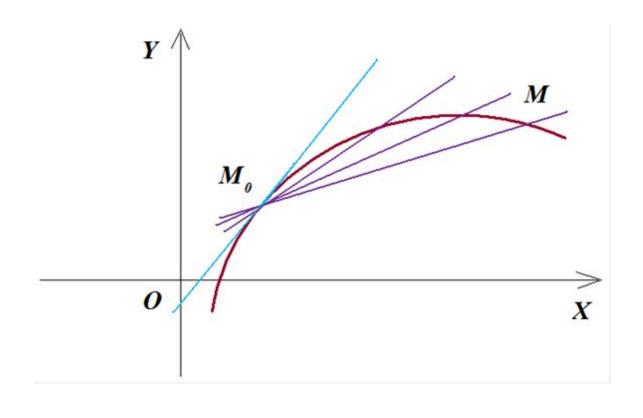
Пример . Найти производную функции y=ln(arcsinx) .

Peшение. Положим: $u=arcsin\ x$, тогда $y=ln\ u$.

Производная сложной функции равна:

$$y' = (\ln u)' \cdot u' = \frac{1}{u} \cdot u' = \frac{1}{\arcsin x} \cdot \frac{1}{\sqrt{1 - x^2}} = \frac{1}{\sqrt{1 - x^2} \arcsin x}.$$

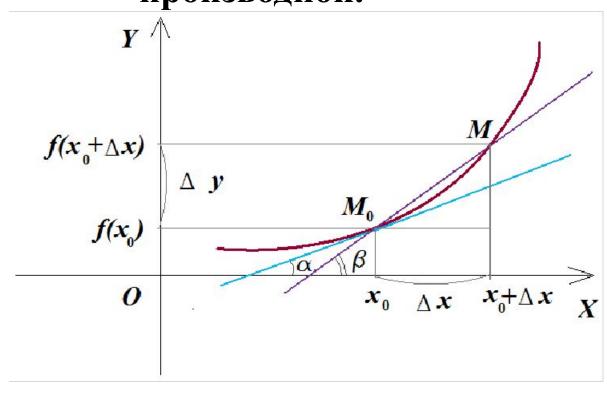
Определение касательной к кривой.



Рассмотрим на плоской кривой фиксированную точку M_0 и вторую точку M. Проведем секущую M_0M . Если точка M перемещается по кривой, а точка M_0 неподвижна, то секущая меняет своё положение.

Касательная есть прямая, занимающая предельное положение секущей.

Геометрический смысл производной.



Рассмотрим график непрерывной функции y = f(x), которая имеет в точке M_0 невертикальную касательную. Проведем через точку M_0 секущую, тогда угловой коэффициент секущей

$$oldsymbol{k}_{ ext{cer}} = oldsymbol{t} oldsymbol{g} oldsymbol{eta} = rac{\Delta y}{\Lambda x}$$

 $m{k}_{
m cer} = m{t} m{g} m{eta} = rac{\Delta y}{\Delta x} \,.$ стремлении При приращения аргумента Δx к нулю, точка M перемещаясь по

графику неограниченно приближается к точке M_0 . При этом секущая приближается к касательной, то есть

$$\lim_{\Delta x \to 0} oldsymbol{eta} = oldsymbol{lpha}$$
, следовательно, $\lim_{\Delta x \to 0} t oldsymbol{g} oldsymbol{eta} = t oldsymbol{g} oldsymbol{lpha}$.

Поэтому угловой коэффициент касательной равен производной функции в точке касания:

$$k_{\text{Kac}} = tg\alpha = \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = f'(x_0)$$

Уравнение касательной.

Воспользуемся уравнением прямой, проходящей через точку $M_0(x_0, y_0)$ с заданным угловым коэффициентом k:

$$y - y_0 = k(x - x_0).$$

Так как для касательной $y_0 = f(x_0)$, $k = tg\alpha = f'(x_0)$, то уравнение касательной имеет вид

$$y - f(x_0) = f'(x_0)(x - x_0).$$

Уравнение нормали.

Hормалью к кривой L в точке $M_0(x_0, y_0)$ называется прямая, проходящая через точку M_0 и перпендикулярная касательной в этой точке.

Так как нормаль перпендикулярна касательной, то её угловой коэффициент

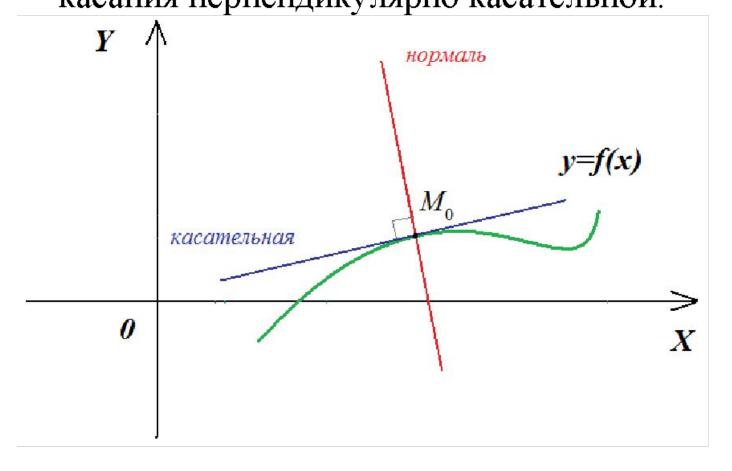
$$k_{HODM.} = -\frac{1}{k_{Kac}} = -\frac{1}{f'(x_0)}$$
 (если $f'(x_0) \neq 0$).

Поэтому уравнение нормали имеет вид

$$y - f(x_0) = -\frac{1}{f'(x_0)} (x - x_0), \text{ или}$$
$$f'(x_0) (y - f(x_0)) + (x - x_0) = 0.$$

Уравнение нормали.

Нормалью к плоской кривой называют прямую проходящую через точку касания перпендикулярно касательной.



Уравнение нормали к кривой y = f(x) в точке x_0 :

$$y = f(x_0) - \frac{1}{f'(x_0)}(x - x_0)$$

При выводе уравнения нормали использован тот факт, что произведение угловых коэффициентов двух взаимно перпендикулярных прямых равно минус единице.

Пример . Составить уравнения касательной и нормали к кривой $y = \sqrt{x+5}$ в точке с абсциссой $x_0 = 4$.

Решение .Найдём
$$y_0 = f(x_0) = \sqrt{4+5} = 3$$
.

Производная функции имеет вид:

$$y' = \frac{1}{2\sqrt{x+5}}.$$

Вычислим угловой коэффициент касательной:

$$k_{\kappa ac.} = f'(x_0) = \frac{1}{2\sqrt{4+5}} = \frac{1}{6}.$$

Составим уравнение касательной по формуле

$$y-y_0=k_{\kappa ac.}\;(x-x_0)$$
: $y-3=rac{1}{6}(x-4),\;$ или $x-6y+14=0.$

Найдём угловой коэффициент нормали:

$$k_{HODM.} = -\frac{1}{k_{roc}} = -6.$$

Запишем уравнение нормали по формуле $y - y_0 = k_{HOPM}(x - x_0)$:

$$y-3=-6(x-4)$$
, или $6x+y-27=0$.

Механический смысл производной. Скорость v прямолинейного движения материальной точки в момент времени t есть производная от пути S по времени t: v = S'(t).

Пример. Пусть $S = \frac{1}{2}gt^2$ (g – постоянное ускорение свободного падения), тогда скорость v(t) = S'(t) = gt.