

Mobile Optimizations

Corey Johnson
Product Manager of Doom

Arm you with more possibilities for optimizations
that you will be able to utilize

Goal

Agenda

• Recognizing Your Performance Bottleneck

• Profiling in and out of Unity

• Optimizing Tips

What do we mean, Performance?

Frametime
• CPU usage (Gamecode, Physics, Skinning, Particles, …)
• GPU usage (Drawcalls, Shader usage, Image effects, …)

Stalls
• Spikes in framerate caused by heavy tasks (e.g. GC.Collect)
• Physics world rebuild due to moved static colliders*

Memory
• Optimizing memory is very important on device
• Avoid GC Hickups by reducing memory activity
• Leak detection

Know Your Bottlenecks

Question: Why are we slow?

Know Your Bottlenecks

Question: Why are we slow?

• CPU or GPU Bound?
• Physics or Rendering?
• Update() or FixedUpdate() loop?

Know Your Bottlenecks

Answer: Always start in the same place...

• Profile
• Profile
• Profile

CPU-Heavy Tasks

• Physics
• Animation
• Gameplay code
• Runtime GI
• Reflection probes
• Particles
• Creating Batches

GPU-Heavy Tasks

• Switching Batches
• Geometry/Pixel shaders
• Compute shaders
• Skinning

Profiling in Unity

• Unity Profiler
• In-Editor
• Live Builds on devices
• Rapid Iteration
• Memory usage of

individual assets

TIPS:
Use Deep Profile to see calls to all methods (including game code)
Use BeginSample() EndSample() to minimize overhead

Custom Profiler Tags

Do this:

Get This:

Unity Memory Profiler
• Open Source

https://bitbucket.org/
Unity-Technologies/
memoryprofiler

• Profile memory of
games running on
device

TIPS:
IL2CPP memory info is better than Mono
Under active development

Profiling outside of Unity (iOS)

• Instruments
• Profile game running

on iOS device
• Mono & IL2CPP Builds

TIPS:
Best for profiling on-device memory usage
Best for determining method CPU usage

Profiling outside of Unity (Android)

• Unity Profiler
• adb
• logcat

• GPU
• Adreno (Qualcomm)
• PVRTune, PVRUniSCo

(PowerVR)
• Intel GPA

Garbage Collection

• Managed Memory
• Size doubles when limit is hit
• NEVER SHRINKS
• Can stall when collected

• Can explicitly call System.GC.Collect() during breaks in game

Garbage Collection - Stack vs Heap

• Heap Objects
• Memory block allocated on the Heap and must be Garbage Collected

when no longer in use
• As Heap expands and contains more objects it takes longer for the

GC to scan & clean
• Classes, Strings, Arrays, Lists

• Stack Objects
• Only live within their scope and memory is freed when it goes out of

scope
• Structs, primitive types

Data Layout Matters
struct Stuff {

int a;
float b;
bool c;
string name;
}

Stuff[] arrayOfStuff; //<< Everything is scanned. GC takes more time
VS

int[] As;
float[] Bs;
bool[] Cs;
string[] names; //<< Only this is scanned. GC takes less time.

Object Pooling

• Create a pool of objects to reuse
• Instantiate as many objects as you’ll need before you need them
• Enable as-needed
• Disable, Reset when they’re done

• No more Instantiate/Destroy cycle (expensive)
• Saves GC from having to run as often

• No new memory allocated
• Allocate a sensible number of objects

• Don’t allocate TOO many objects as they do take up their own
memory in the Heap that can’t be reused

Use System.Text.StringBuilder over string
string str = “1 allocation” + “ 2 allocations”;

• Each string concatenation allocates multiple objects
• Plus a 3rd for the actual result
• Problematic if called in loops, Update(), FixedUpdate(), etc

• Use System.Text.StringBuilder
• .Append() is faster in loops
• Starts with a capacity, increases when it is surpassed in an Append()

call. Then it allocates more memory
• Mecanim: Use Animator.StringToHash() for release

• Can be used for custom code

More Memory Optimizations

Reuse temporary buffers
• If buffers for data processing are needed every frame, allocate the buffer

once and reuse

Don’t use OnGUI
• Even empty OnGUI calls are very memory intensive

Don’t .tag == .tag
• Use CompareTag()

Other GC Optimizations

• for(;;) instead of foreach
• foreach on anything but arrays allocates an Enumerator (due to old

Mono implementation)
• Avoid LINQ functions

• Allocates memory for Enumerators, essentially a foreach
• Avoid anonymous functions and lambda expressions

• Allocates memory if needing to access variables outside its scope
• Avoid Boxing value types

• Converts them to reference types allocated on the Heap

Marshalling Cost

You can write native plugins
• Can be super fast!
• Can be expensive!
• Design plugins carefully to avoid marshalling cost

Can sneak up on you
• gameObject.GetComponent<...>()
• Cache your components

Case Study - Caching

Getting 20k matrices which transform object from local to camera
space

Naive implementation: 125 ms

Case Study - Caching

• Cache complex expressions
• Properties can hide expensive operations

Optimized implementation: 33.5ms

Case study - Copying

Create a method using references
• We had 3 redundant copies (2 inputs, 1 output)
• Matrix4x4 is a value-type

Optimized implementation: 21.5ms

Optimizing Graphics

• Bake what can be baked
• Lighting
• Shadows

• Batch what can be batched
• Static Meshes
• Materials
• UI Canvas elements

Optimizing Meshes

• Only use as many vertices as you need
• Set “Read/Write” to false if not
accessing vertices in script

• Enabled = extra copy in memory
• Non-uniform scaling requires read/write

• Enable “Optimize Mesh”
• Reorder vertex info for fast reading

• Always enable ‘Optimize Mesh Data’ in
‘Player Settings->Other Settings’

• Removes redundant vertex attributes
(tangents, normal, color, etc)

Optimizing Meshes

• Disable “Import Blend Shapes” if none
are used

• Disable “Normals and Tangents” if they
won’t be used by materials

• Pre-transform static geometry to world
space

• Enable Static and Dynamic batching

Combine Meshes

Combine Textures

Texture Atlases can be made by artists too…

Optimizing Textures

• iOS - Use PVRTC
• Android

• OpenGLES 2.0 devices: ETC1
• OpenGLES 3.0 devices: ETC2
• Specific GPUs might handle other formats more efficiently

• UI - for textures that can’t be compressed without fidelity loss
use 16-bit texture instead of 32

• 16-bit Texture Formats
• Gradient alpha - RGBA4444
• Only cutout alpha - RGBA5551
• No alpha - RGB565

Optimizing Textures - Example

• Shadowgun
• Used “Render to Texel” tool to bake normal-mapped lighting

into textures
• https://www.assetstore.unity3d.com/en/#!/content/4153
• Saved massive run time calculations

Optimizing Textures - Example

Optimizing Audio

• “Force to Mono” if sounds don’t require 3D/Stereo
• Load Type “Decompress on Load” if clip smaller than 200kb

• Unity uses 200kb playback buffer when decompressing audio so
leave it decompressed. Saves memory when playing the sound.

• “Stream to Disk” for long audio clips
• Only 1 clip at a time
• Buffers compressed data
• Decodes on the fly
• Uses minimal memory

• “Compressed in Memory” for other clips

Optimizing UI
• Keep UI elements at the same z-depth

• Different z-depths breaks batching
• Use Sprite Packer

• Fewer draw calls for Sprites
• Separate UI into several Canvases (but not too many)

• Batch time grows more than linearly by # of elements to sort, analyze
• Combine UI that doesn’t change

• Canvas won’t need to be rebatched
• Reduce switching between overlapping Text and Sprites
• Reduce text in UI if possible

• Text is batched separately from Sprites

Other Optimizations

• Limiting Rigidbodies to 2 dimensions in a 2D game
• Use Box2D or roll your own
• Doesn’t pull in whole physics system(s)

• Rigidbodies on projectiles
• Calculate collision on your own

• Lots of individual 3D objects for collectables or characters
• Use animated sprites on particles to represent simple objects

• Perform expensive calculations every few frames and cache
the results

• Coroutines (maybe)

Script Optimizations

• Avoid Find…() methods
• Cache a reference instead

• FindWithTag() is more optimized but still not as fast
• Use Non-allocating functions

• i.e. pass array as parameter to fill instead of allocating and returning a
new one

• Unity’s Physics system has examples of non-allocating functions
i.e. Physics2D.RaycastNonAlloc()
public static int RaycastNonAlloc(Vector2 origin, Vector2 direction, RaycastHit2D[] results)

Vector Math Optimizations

• Normalize a vector once if used over and over
• Normalization function takes longer than just storing and accessing it

• v.normalized slower than v * 1.0/v.length
• Use Vector’s .sqrMagnitude to compare distances instead of
getting the actual distance

• Saves some calculations

Shader Optimization

• In general, less instructions is better*
• Move calculations to Vertex Shader

• High DPI devices make every pixel count
• Simplify math

• Trig functions are super expensive
• Bake into lookup textures

• Reduce temporary registers used
• Number of shader threads that can work simultaneously depends on

this

10000 Objects Update() vs Update() 10000 Objects

• Blog Post -
http://blogs.unity3d.com/2015/12/23/1k-update-calls/
With Sample Project -
https://github.com/valyard/Unity-Updates/commits/master
By Unity’s Valentin Simonov

• Much faster to run a function on 10000 objects from a single
manager GameObject’s Update() method

• Due to remaining on the Managed side. Native → Managed call to
Update and various safety checks Unity does internally makes
Update() on 10000 objects slow

