«Основы общей психологии»

тема: МОЗГ И ПСИХИКА.

План:

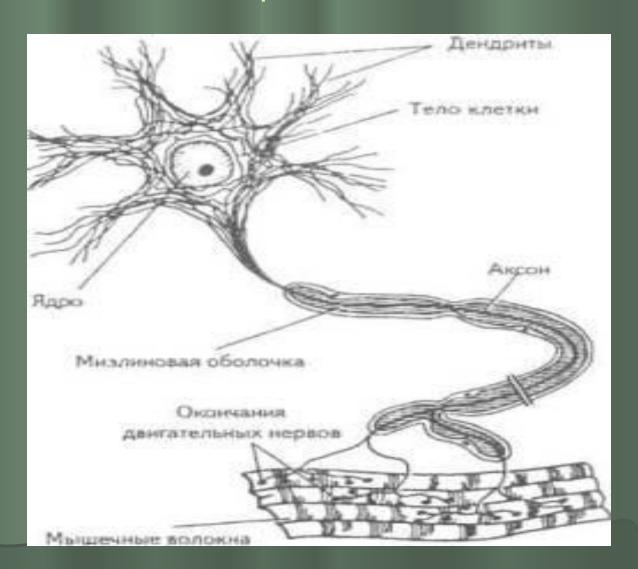
- 1. Органические предпосылки развития психики.
- 2.Функциональная морфология нервной системы. Нейрон как структурно-функциональная единица нервной системы. Строение головного мозга.
- 3.Представления о локализации психических функций в коре головного мозга.
- 4. Функциональная организация человеческого мозга.
- 5.Физиологические механизмы функционирования мозга.
- 5. Механизмы и структуры, обеспечивающие интегративную деятельность нервной системы.

1. Органические предпосылки развития психики. Специализация органов.

На протяжении длительной эволюции органического мира от одноклеточных животных до человека, физиологические механизмы поведения непрерывно усложнялись. Так, у одноклеточного организма единственная клетка выполняет все функции жизнедеятельности (ощущение, движение, пищеварение).

У более высокоорганизованных животных происходит специализация клеток и органов.

Но специализация разделяет органы и функции, а целостная жизнедеятельность организма требует непрерывной связи между ними, что достигается благодаря


центральной нервной системе, работающей как единое целое.

2. Функциональная морфология нервной системы. Нейрон как структурно-функциональная единица нервной системы.

У всех позвоночных общий план строения нервной системы одинаков. Основной элемент нервной системы — нервные клетки, или **нейроны**. Нейрон состоит из **тела клетки** и отростков, название которых **дендриты** (воспринимают возбуждение) и **аксон** (передает возбуждение).

Контакт аксона с дендритами или телом другой нервной клетки называется **синапсом**.

Рис. 1. Нервная клетка (нейрон) — основной элемент нервной системы

Центральная нервная система (ЦНС) состоит из спинного и головного мозга.

Различные части ЦНС выполняют разные виды нервной деятельности.

Чем выше расположена та или иная часть мозга, тем сложнее ее функции.

Строение Цыс

кторн юй

Большие полушария ГМ

Промежуточный мозг (гипоталамус, таламус)

Средний мозг

Продолговатый мозг и мозжечок

Спинной мозг

XIJXNG RJR HAKONG H HBCH X NIGORO

HENDER HE

ифунка х ствля дфункц

′₽IQI⊤

MNCTE BHYTP BHYTP BHGHX BHGHX BHGHY BHGHY

LDAUU AHPIX WPIMG PHPIX ODMGU

ланан ТЭүфи Дайба ЭИ

Наиболее высокие отделы центральной нервной системы представлены большими полушариями головного мозга. В состав больших полушарий входят лежащие в глубине скопления нервных клеток — так называемые подкорковые узлы, и поверхностный слой нервных клеток — кора головного мозга. Подкорковые узлы вместе с расположенными поблизости от них зрительными буграми называют подкоркой. Кора головного мозга представляет собой как бы плащ или мантию, покрывающую большие полушария. Ее поверхность (около 2000 см2) собрана в ряд складок (борозд и извилин). Кора в совокупности с подкоркой осуществляет самые сложные формы рефлекторной деятельности.

Функции нервных центров.

Все части нервной системы работают в тесном взаимодействии. Спинной мозг и стволовая часть головного мозга (продолговатый и средний мозг), представляют собой совокупность рефлекторных центров врожденных безусловных рефлексов. В спинном мозгу находятся центры наиболее простых рефлексов (например, коленный рефлекс). Наряду с рефлекторными центрами, регулирующими работу скелетных мышц туловища и конечностей, в спинном мозгу находятся центры, регулирующие работу внутренних органов (например, защитные действия у обезглавленной лягушки).

Стволовая часть головного мозга является центральным аппаратом, регулирующим ряд сложных безусловных рефлексов. К их числу относятся сосательный рефлекс, жевание и глотание (при раздражении ротовой полости пищевыми веществами). Рефлекторные центры, регулирующие все эти рефлексы, находятся в продолговатом мозгу. Там же находятся и нервные центры, регулирующие некоторые защитные рефлексы: чихание, кашель, слезоотделение.

Особое значение имеют находящиеся в продолговатом мозгу нервные центры, которые регулируют работу органов дыхания и сердечнососудистой системы.

В среднем мозгу находится центр сужения зрачка и центры, передающие возбуждение с глаза и уха на двигательную сферу.

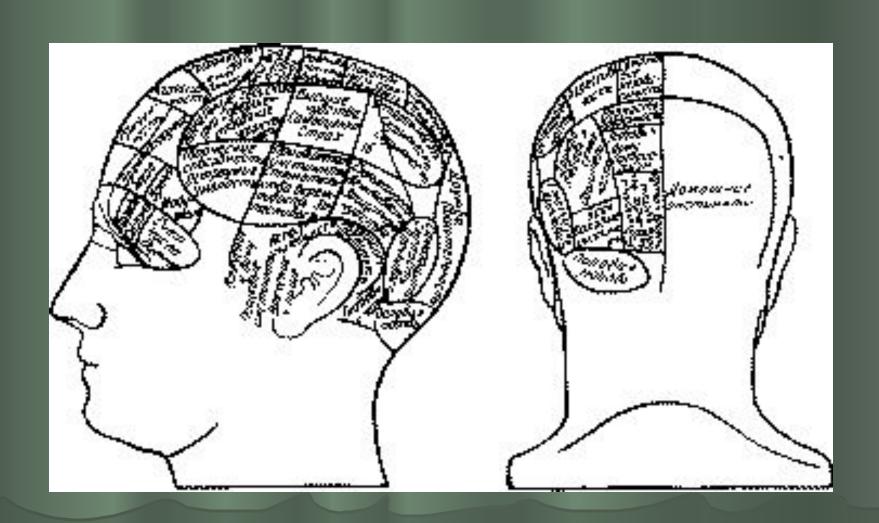
Очень сложные функции выполняет мозжечок: организм только тогда может сохранять устойчивое равновесие при ходьбе, беге, прыжках и т.п., когда осуществляется чрезвычайно тонкая

регулировка состояния всех мышц тела.

Подкорка (зрительные бугры и подкорковые узлы больших полушарий) обеспечивает наиболее сложную безусловно рефлекторную деятельность. Отметим сразу, что название «зрительные бугры» не соответствует их подлинной функции - они являются подкорковым чувствительным центром. А подкорковые узлы являются двигательным аппаратом подкорки, регулируя, например, ходьбу.

3. Представления о локализации психических функций в коре головного мозга.

Органом сознательной деятельности человека является кора больших полушарий, поэтому главным является вопрос о взаимоотношении психики человека и коры больших полушарий. В науке эта проблема обозначена как вопрос о функциональной локализации или локализации психических функций в коре. Вопросы о том, как соотносятся психические процессы и функции мозга, в разные периоды


развития науки решались по-разному.

1) Френология Франца Галля (начало 19 в.). Каждой способности соответствует участок нервной ткани коры.

Такое предположение легло в основу специальной области науки, получившей название «френология» - на основе изучения выпуклостей на черепе, можно было делать выводы об индивидуальных способностях человека.

Это было первое наивно-материалистическое, механистическое представление о локализации функций в мозгу человека.

Френологическая карта

2) Идея Флуранса о «целостном единстве мозга» (40-е годы XIX в.). Флуранс, на основании опытов экстерпации (удаления) частей мозга, выдвигает положение об эквипотенциальности (от лат. aequus — «равный») функций коры. По его мнению, мозг является однородной массой, функционирующей как единый цельный орган.

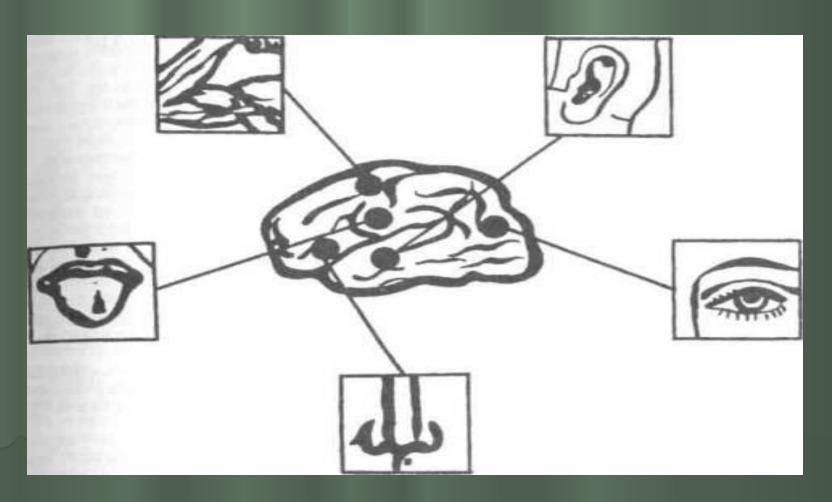
3) Современное учение о локализации функций в коре заложил французский ученый П.Брока, выделивший в 1861 г. двигательный центр речи. Затем немецкий психиатр К.Вернике в 1873 г. обнаружил центр словесной глухоты (нарушение понимания речи). Начиная с 70-х годов прошлого столетия, изучение клинических наблюдений показало, что поражение отдельных участков мозговой коры приводит к выпадению определенных психических функций. Это дало основание выделить в коре головного мозга нервные центры, несущие ответственность за определенные психические функции.

4) Вывод о том, что психические процессы являются функцией всего мозга в целом. Во время первой мировой войны немецкий психиатр К.Клейст проводил наблюдения над ранеными с повреждениями мозга. В 1934 г. он составил так называемую локализационную карту, в которой психические функции соотносились с ограниченными участками коры головного мозга. Однако подход «прямой» локализации сложных психических функций в определенных участках коры больших полушарий очень скоро показал свою несостоятельность.

Карта коры.

Гистологические исследования показали, что кора головного мозга является высоко дифференцированным аппаратом. Различные области мозговой коры имеют неодинаковое строение. Нейроны, входящие в состав мозговой коры, часто оказываются настолько специализированными, что реагируют только на определенные раздражители. Со временем, в результате многочисленных исследований, стала как бы вырисовываться карта коры, в которой установлен ряд корковых сенсорных и двигательных центров.

анализ и синтез зрительных раздражений происходят в затылочной области коры (зрительная зона коры);


анализ и синтез слуховых раздражении — в верхних отделах височной области (слуховая зоны коры);

анализ и синтез осязательных раздражении и раздражении, возникающих в мышечно-суставном аппарате, — в передней части теменных отделов;

Рис.

2. Анализаторы и их локализация в коре

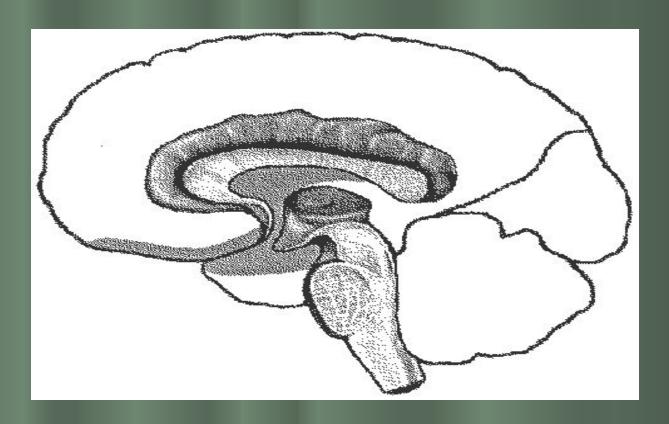
головного мозга

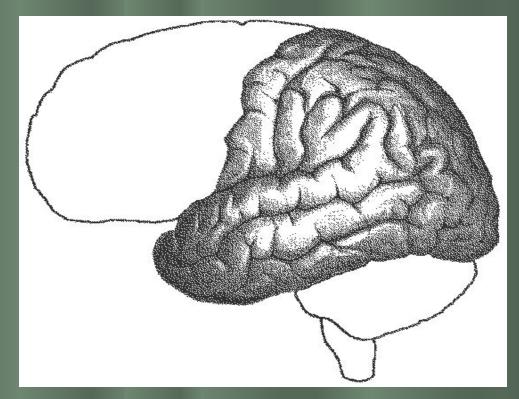
• Одной из функций коры головного мозга, обеспечивающей психическое отражение мира, является разложение сложных явлений окружающей действительности на отдельные элементы. Эту работу выполняет механизм анализаторов.

Каждый анализатор включает три основные части: 1) рецептор — концевой аппарат, 2) проводниковый нервный путь, 3)центральное звено, расположенное в соответствующей зоне коры.

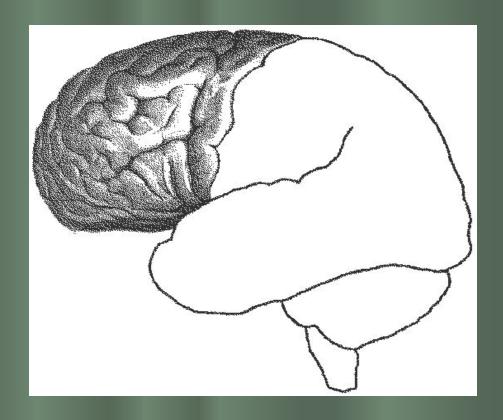
Чем большее значение имеет тот или иной вид раздражений в жизни животного, тем большая площадь коры головного мозга «работает» на тот орган чувств, откуда идут эти раздражения. Например, в жизни ежа обоняние играет очень большую роль. В мозговой коре ежа поэтому обонятельная зона занимает огромное место. И, наоборот, в коре головного мозга человека, в жизни которого обоняние не играет значительной роли, обонятельная зона представлена относительно небольшим участком. распределение представительства периферии в

Аналогичным образом и в двигательной зоне коры большей территорией представлены органы, играющие более важную роль в жизни организма. Так, клетки, связанные с туловищем, сконцентрированы у человека на относительно небольшом участке двигательной зоны. Клетки же, связанные с тонко дифференцируемыми у человека движениями пальцев руки, расположены на значительно большей территории. Особенно большой участок занимают клетки, связанные с большим пальцем руки, играющим очень важную роль в рабочих движениях человека. Значительную территорию в коре мозга занимают клетки, связанные с мышцами губ и языка органов речи.


Рис. 3. Представительство разных частей тела в двигательной области коры (по *Пенфилду*)


Функциональная организация человеческого мозга.

Даже относительно простое произвольное движение включает целый комплекс как чувствительных (афферентных), так и двигательных (эфферентных) импульсов. Произвольные движения, ходьба, или такой сложный психический процесс, как чтение, осуществляются за счет совместной деятельности нервных центров, объединенных в сложную функциональную систему (П.КАнохин). Естественно, что сложная функциональная система не может быть «локализована» в определенном участке нервной системы.


Функциональная организация человеческого мозга по современным взглядам нейропсихологии (А.Р. Лурия) включает три основных блока:

I — энергетический блок, (поддерживающий тонус, необходимый для нормальной работы высших отделов коры головного мозга расположен в верхних отделах мозгового ствола)

II — блок приема, переработки и хранения информации (включает задние отделы обоих полушарий, теменные, затылочные и височные отделы коры).

III — блок, обеспечивающий программирование, регуляцию и контроль деятельности (лобные отделы коры).

При повреждении функций I блока внимание становится неустойчивым, появляются безразличие, сонливость. Нарушение нормальной работы II блока приводит к потере чувствительности — кожной и глубокой (проприоцептивной), теряется четкость движений И т. Д- Поражение III блока приводит К дефектам поведения, изменениям в сфере движений.

Локальные поражения мозга дают богатый материал для изучения отдельных зон (исследования А.Р. Лурия). Установлено, что нарушение левой височной доли нарушает слуховую память. Такой больной может хорошо ориентироваться в условиях задачи, устанавливать логические отношения, но не может использовать прошлый опыт.

При поражении *теменной* и *затылочной долей* интеллектуальная деятельность остается осмысленной, но затрудняется установление временных отношений.

При поражении лобных долей оказывается возможным выполнение отдельных логических операций, но невозможно спланировать ход решения задачи, выпадает ориентировочная основа действий.

5. Общие представления об основных физиологических механизмах функционирования мозга

Рефлекторный принцип работы мозга.

Все, даже наиболее сложные формы работы мозга, лежащие в основе психической деятельности, построены по типу рефлексов. Все рефлексы распадаются на две большие группы: безусловные и условные. Безусловными рефлексами называются врожденные и неизменные рефлексы, осуществляющиеся отделами нервной системы, лежащими ниже коры головного мозга. Благодаря безусловным рефлексам осуществляется лишь сравнительно несовершенное приспособление организма к меняющимся условиям среды, так как эти рефлексы возникают на узкий круг раздражителей и носят обычно стандартный характер. Но так как условия среды очень изменчивы, требуются другие формы ответов, меняющиеся

Новыми изменчивыми формами реагирования, формирующимися в течение жизни организма и осуществляющимися у высших животных корой головного мозга, являются условные рефлексы. При образовании условных рефлексов раздражитель, который ранее был безразличен для организма, приобретает сигнальную функцию — становится сигналом другого раздражителя, имеющего для организма прямое жизненное значение. Раздражители, вызывающие безусловные рефлексы, называются безусловными; раздражители, вызывающие условные рефлексы, называются условными.

Анатомо-физиологический механизм рефлекторной деятельности обеспечивает:

- 1) прием внешних воздействий;
- 2) преобразование их в нервные импульсы (кодирование) и передача в мозг;
- 3) декодирование и переработку принятой информации, выдачу команд в виде нервных импульсов к мышцам, железам;
- 4) прием и передачу в мозг информации о результатах совершенного акта (обратная связь); 5) коррекцию повторных действий с учетом данных обратной связи.

Образование условных рефлексов.

Образование условных рефлексов представляет собой формирование в мозгу новых временных связей между отделами коры, не имевшихся ранее. Достаточно удалить у животного кору головного мозга, чтобы образование новых временных связей, или условных рефлексов, стало невозможным и чтобы старые, образованные ранее нервные связи исчезли.

Собака с удаленной корой может передвигаться, глотать пищу, но она не узнаёт хозяина, свою миску и т.д.

Законы образования условных рефлексов были открыты И.П.Павловым. Им была создана методика, позволяющая проводить исследования высшей нервной деятельности в условиях точного эксперимента. Известно, что при попадании пищи в рот начинает выделяться слюна; это выделение слюны является частью безусловной пищевой реакции организма. Однако такое же выделение слюны возникает и в случае, если на организм действует какой-либо условный раздражитель (например, стук ложки по тарелке), только сигнализирующий о появлении пищи. Выделение слюны в данном случае является условной пищевой реакцией.

Условная слюнная реакция позволяет судить о процессах возбуждения в нервных центрах коры, участвующих в образовании условной реакции. Чем сильнее это возбуждение, тем больше слюны выделится в ответ на данный сигнал; если же в силу каких-либо причин возбуждение в коре головного мозга сменится торможением, то данный раздражитель не будет сопровождаться никакой слюнной реакцией. Таким образом, выделение или невыделение слюны в эксперименте с условным пищевым рефлексом становится внешним показателем процессов возбуждения или торможения в коре головного мозга. Для того, чтобы получить возможность точно измерять выделение слюны у животного, на собаке производится специальная операция, при которой протоки, собирающие слюну от слюнных желез, выделяются наружу через кожу щеки

животного.

. Благодаря этому слюна выделяется вовне и ее количество может быть точно измерено. При проведении эксперимента такая оперированная собака ставится в специальный станок. Для выработки условных рефлексов предъявление условного раздражителя (например, зажигание лампочки) сочетается с подачей пищи (т.е. безусловным раздражителем). Такое сочетание зажигания лампочки и подачи пищи повторяется несколько раз, и в результате, у собаки начинает вырабатываться слюна на зажигание лампочки. То есть в коре головного мозга собаки вырабатывается временная условная связь между двумя центрами зрительным и пищевым.

Условия образования условных рефлексов. Существенным для образования условных рефлексов является отсутствие каких-либо сильных посторонних раздражителей. Если при выработке условной связи действует какой-нибудь сильный посторонний раздражитель (например, резкий шум, создающий стойкий очаг возбуждения), то остальные участки коры приходят в тормозное состояние и образование условного рефлекса затрудняется.

6. Механизмы и структуры, обеспечивающие интегративную деятельность нервной системы. Движение нервных процессов.

И последнее, на чем мы остановимся, — рассмотрим, как протекает движение нервных процессов в коре больших полушарий. Раздражитель, действующий на органы чувств, вызывает возбуждение определенного участка коры головного мозга. Это возбуждение не остается на месте, а распространяется, или иррадирует, по коре, захватывая и ближайшую подкорку. Процессом, противоположным иррадиации, является концентрация нервных процессов, т.е. сосредоточение их в более ограниченном месте. Иррадиируют и концентрируются оба нервных процесса — возбуждение и торможение. Это основная форма движения нервных процессов по коре больших полушарий. Иррадиация и концентрация возбуждения и торможения зависят от ряда

условий, прежде всего от силы раздражителей.

Важное значение в деятельности нервной системы имеет закон взаимной индукции нервных процессов, согласно которому каждый из нервных процессов возбуждение и торможение — вызывает или усиливает противоположный процесс. Возбуждение, возникающее в определенном участке коры головного мозга, вызывает в расположенных вокруг него участках процесс торможения (отрицательная индукция). Возникшее в определенном пункте торможение вызывает в окружающих участках обратный ему процесс возбуждения (положительная индукция).

Доминанта.

Существенным является тот факт, что иррадиация возбуждения не происходит равномерно во всех направлениях. Место наибольшего в данный момент возбуждения в коре головного мозга называется доминантой — стойким очагом возбуждения. Если в коре головного мозга возникает стойкая доминанта, то всякое возбуждение, вызванное более слабым раздражителем, притягивается к этому очагу, распространяется в его направлении. Учение о доминанте как господствующем очаге возбуждения в мозгу, было создано выдающимся русским физиологом — А.А.Ухтомским.

Аналитико-синтетическая деятельность мозга. Замыкание временных связей является основной синтезирующей деятельностью коры мозга. Вместе с тем образование условного рефлекса всегда сопряжено с выделением того раздражителя, на который образуется рефлекс, т.е. кора осуществляет и анализирующую деятельность. Эта сложная аналитико-синтетическая деятельность коры мозга, лежащая в основе образования условных рефлексов, обеспечивает приспособление организма к условиям жизни.

КОНЦЕПЦИЯ ФУНКЦИОНАЛЬНОЙ СИСТЕМЫ, разработанная академиком П.К.Анохиным, предполагает саморегулирующуюся организацию, все элементы которой взаимодействуют для получения полезного для организма приспособительного результата.

В центральной нервной системе ожидаемый итог действий представлен в виде своеобразной нервной модели - акцептора результата действия. Когда он задан и известна программа действия, начинается процесс осуществления действия.

Акцептор действия – механизм сличения полученного результата действия с предполагаемым. Связан с памятью и представлениями.

С самого начала выполнения действия в его регуляцию включается воля, и информация о действии через обратную афферентацию передается в центральную нервную систему, сличается там с акцептором действия, порождая определенные эмоции. Туда же через некоторое время попадают и сведения о параметрах результата уже выполненного

действия.

Если параметры выполненного действия не соответствуют акцептору действия (поставленной цели), то возникает отрицательное эмоциональное состояние, создающее дополнительную мотивацию к продолжению действия, его повторению по скорректированной программе до тех пор, пока полученный результат не совпадет с поставленной целью (акцептором действия). Если же это совпадение произошло с первой попытки выполнения действия, то возникает положительная эмоция, прекращающая его.

Системная деятельностью коры головного мозга.

В естественных условиях жизни раздражители не существуют изолированно. Обычно они возникают одновременно или последовательно. Любой предмет — это одновременный комплекс раздражителей. Для того, чтобы приспособиться к среде, мозг должен реагировать на целые системы раздражителей, тонко различая одну систему от другой. Работа больших полушарий по объединению отдельных раздражителей в целые комплексы называется системной деятельностью коры

головного мозга.

Системный принцип в работе коры больших полушарий обнаруживается и в возможности образования условного рефлекса не на отдельный раздражитель, а на отношение раздражителей — дифференцировочная реакция. Важнейшим проявлением системности в работе коры является образование динамического стереотипа целой системы реакций на определенные комплексы раздражителей.

Системная работа коры головного мозга позволяет достигать экономии в образовании и сохранении нервных связей. При наличии определенной системы связей человек оказывается в состоянии по одному элементу системы воспроизвести всю ее в целом, и это в огромной мере упрощает механизм закрепления навыков и знаний. Принцип системности имеет решающее значение для понимания физиологических механизмов психической деятельности.

Спасибо за внимание!