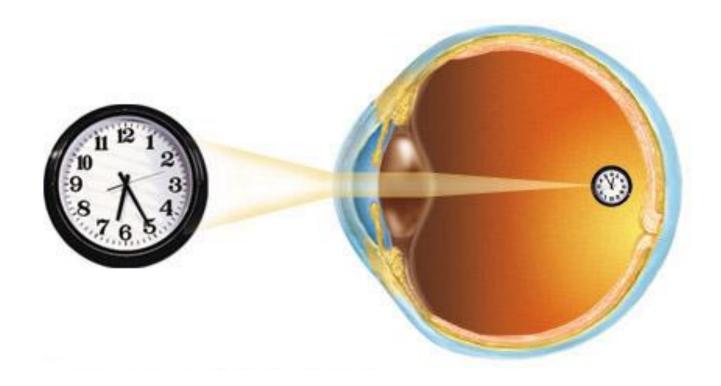
Мультимедиа технологии

Модуль 2


Компьютерная графика

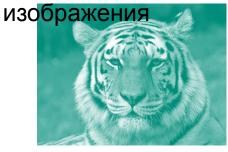
Компьютерная графика – специальная область информатики, занимающаяся методами и средствами создания изображений с помощью программно-аппаратных комплексов

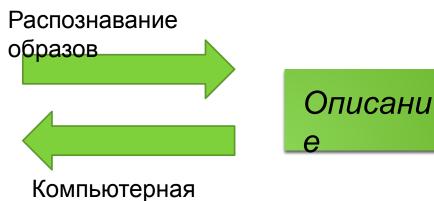
Машинная графика – совокупность методов и средств для преобразования данных в графическую форму представления и из графической формы представления с помощью электронновычислительной машины (определение дано Международной организации по стандартизации)

Что такое изображение?

Изображение – результат прохождения светового потока, отраженного от объекта или излучаемого им через оптическую систему

Основные направления работы с изображением


графика


Изображени

e

Обработка

Изображени е

4

Основные направления работы с изображением

Распознавание образов

(система технического зрения, computer vision) совокупность методов, позволяющих получить описание изображения, поданного на вход, либо отнести заданное изображение к некоторому классу

Обработка изображений

(image processing) рассматривается задачи, в которых входные и выходные данные являются изображениями

Компьютерная графика

(computer graphics) воспроизводит изображение в случае, когда исходной является информация неизобразительной природы

Области применения компьютерной графики

Визуализация

создание плоских изображений трёхмерных моделей

Проектирование

процесс, в ходе которого создаётся прототип, прообраз необходимого объекта

Компьютерна я графика

Пользовательский интерфейс

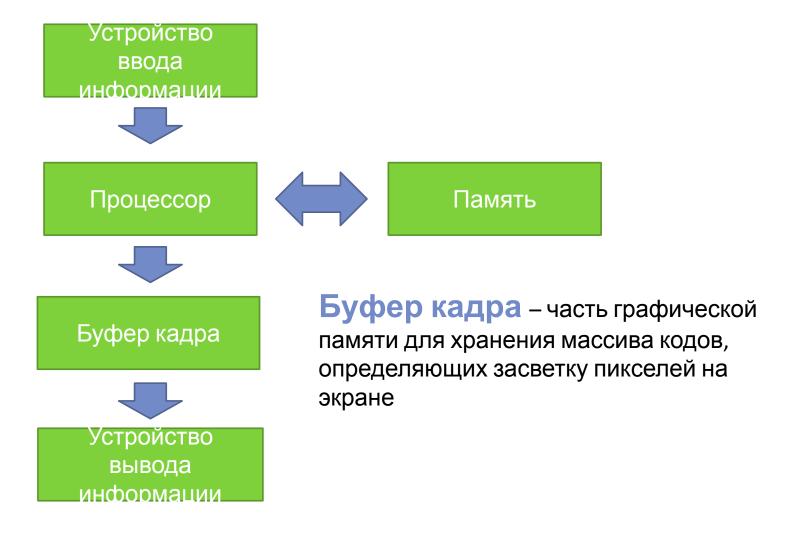
обеспечение взаимодействия пользователя и компьютерной системы

Моделирование

создание и представление трёхмерных (3D) моделей

Область применения КГ: пользовательский интерфейс

Интерфейс – совокупность средств и методов обеспечения взаимодействия между элементами системы

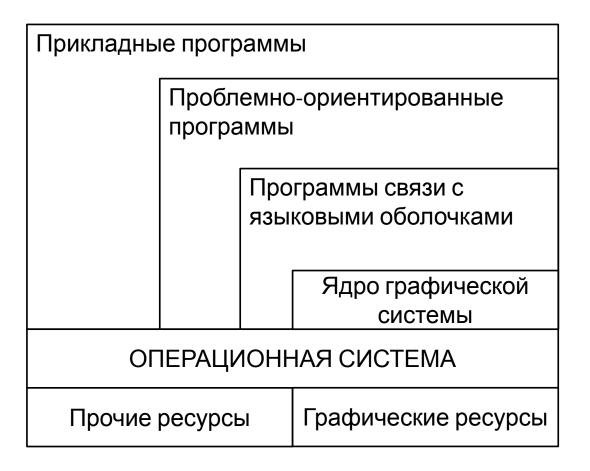

Пользовате

ль

пользовательский интерфейс – элементы и компоненты программы, способные оказать влияние на взаимодействие пользователя с программным обеспечением

Графический пользовательский интерфейс (graphical user interface, GUI) – обеспечивает возможность управления поведением вычислительной системы через визуальные элементы управления – окна, списки, кнопки, гиперссылки и т.д.

Основные компоненты графической системы


Ядро графической системы

Ядро графической системы (ЯГС) – базисная графическая система, которая может использоваться для решения большинства прикладных задач, генерирующих изображение с помощью вычислительных систем.

ЯГС – функциональный интерфейс между прикладной программой и конфигурацией графических устройств ввода и вывода.

Функциональное описание ядра графической системы представлено в ГОСТ 27817-88 (соответствует ИСО 7942)

Модель функционирования ЯГС

Языковая оболочка – зависящая от языка программирования часть реализации, в которую заключено языково-независимое ядро

Концепция графического вывода

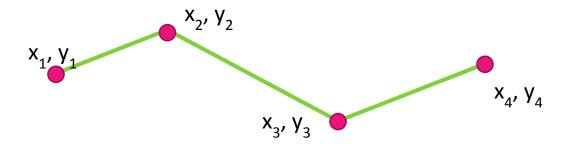
Примитив (output primitive)

базовый графический элемент, который может использовать для построения изображения Примитивы: ломаная, полимаркер, текст, полигональная область, матрица ячеек и обобщенный примитив вывода

Атрибу

Т

характеристика примитива вывода или сегмента, например, цвет примитива, тип и толщина линии примитива, выделение, межлитерный просвет


Изображение (display image)

совокупность графических примитивов и/или сегментов, которая может быть одновременно выведена на носитель изображения

Примитивы вывода

Векторный примитив: ЛОМАНАЯ (POLYLINE) -

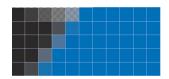
ЯГС генерирует набор отрезков прямых, соединяющих заданную последовательность точек

Точечный примитив: ПОЛИМАРКЕР (POLYMARKER) -

ЯГС генерирует набор символов некоторого типа, которые центрируются в указанных точках

Текстовый примитив: ТЕКСТ (ТЕХТ)

– ЯГС генерирует строку литер с началом в указанной позиции


Примитивы вывода

Растровые примитивы: ПОЛИГОНАЛЬНАЯ ОБЛАСТЬ (FILL AREA)

– ЯГС генерирует многоугольник; область, которую он ограничивает может быть пустой, иметь фоновую окраску, быть покрыта узором по шаблону или зашрихованной

МАТРИЦА ЯЧЕЕК (CELL ARRAY)

– ЯГС генерирует матрицу прямоугольных ячеек, каждой из которых присвоен индивидуальный цвет

Примитив общего назначения: ОБОБЩЕННЫЙ ПРИМИТИВ ВЫВОДА (GENERALIZED DRAWING PRIMITIVE)

Атрибуты примитивов вывода

РАНАМО

тип линии, толщина линии, цвет

ПОЛИМАРКЕР

тип маркера, масштаб маркера, цвет

TEKCT

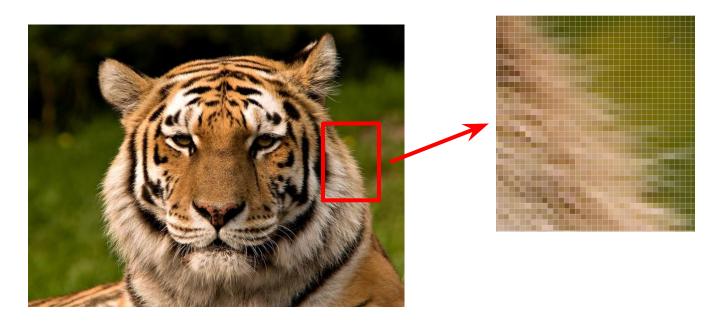
шрифт, высота литер, вертикаль литеры, масштаб расширения литеры, направление текста, межлитерный интервал, выравнивание текста, цвет

ПОЛИГОНАЛЬНАЯ ОБЛАСТЬ

вид заполнения (пусто, заливка цветом, по шаблону, штриховка)

МАТРИЦА ЯЧЕЕК

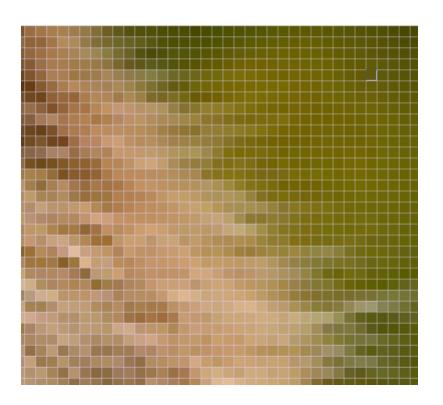
цвет


ОБОБЩЕННЫЙ ПРИМИТИВ ВЫВОДА

Методы представления графической информации

- Растровая графика
- Векторная графика
- Фрактальная графика

Растровая графика


Растровая графика – способ построения изображения, в котором изображение представляется массивом простейших элементов – пикселей, где каждый пиксель имеет четко заданное положение

Растровая графика

Растровая матрица – набор пикселей, каждый из которых характеризуется координатами (2 числа) и цветом (1 число)

Пиксель (англ. pixel, picture element – элемент рисунка) – минимальный элемент растрового изображения

Растровая графика

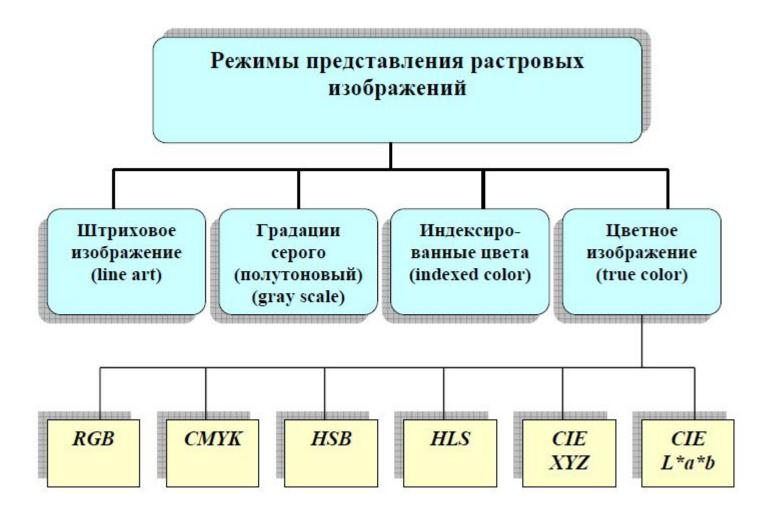
Достоинства

растровые редакторы являются наилучшим средством обработки фотографий и рисунков, т.к. обеспечивают высокую точность передачи градаций цветов и полутонов

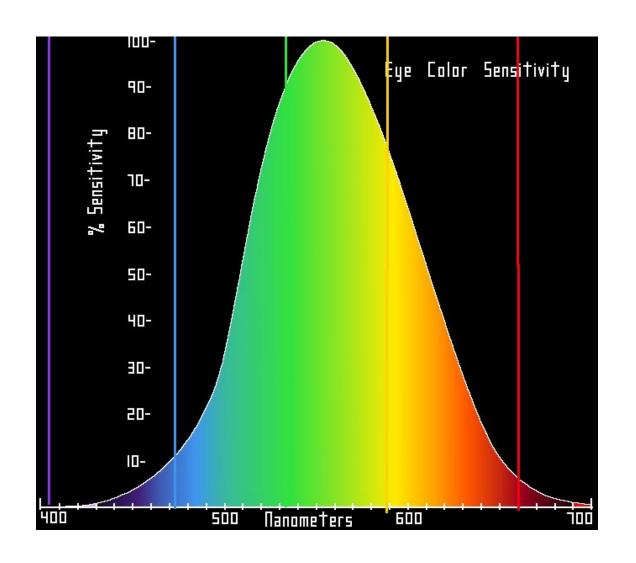
Недостатки

- растровая графика чрезвычайно чувствительна к изменению размера рисунка, и масштабировать её затруднительно
- хранение и обработка файлов растровой графики требует больших объёмов памяти

Характеристики растрового **ИЗОБРАЖЕНИЯ Разрешение** – количество пикселей на единицу длины

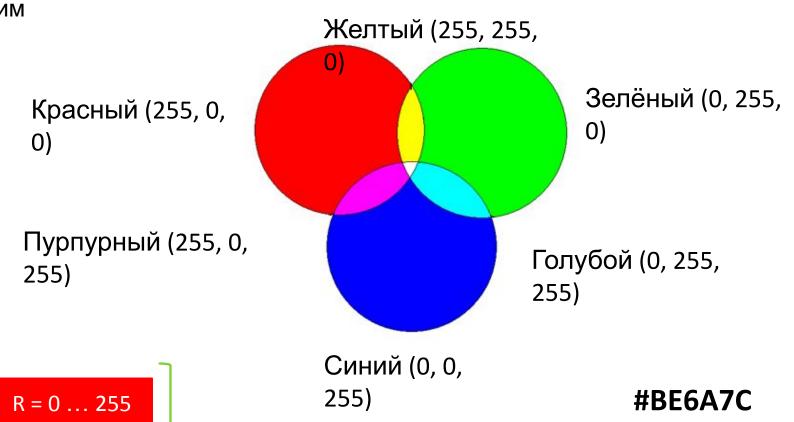

- разрешение оригинала (точек на дюйм dot per inch, dpi)
- разрешение экранного изображения (пикселей на дюйм ррі)
- разрешение печатного изображения

Устройство	Ориентировочное эффективное разрешение
Монитор	96 ppi
Струйный принтер	150–166 dpi
Струйный принтер в фоторежиме	266–300 dpi
Лазерный принтер	266–300 dpi
Цифровая печать фотографий БЛУБИНА ЦВОТА КОЛИЦ	300–450 dpi


Типографская нечать а - количествомуслользуемых цветов, т.е. число разрядов отводимое для хранения информации о цвете пикселя

ЦВЕТОВАЯ МОДЕЛЬ – способ для описания цветов особенно в компьютерных технологиях и полиграфии

Режимы представления растровых изображений



Восприятие цветов глазом человека

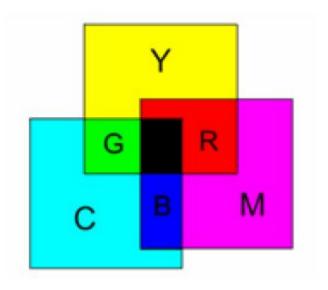
Цветовая модель RGB

Цветовая модель RGB (*Red Green Blue*) – аддитивная цветовая модель, согласно которой цвет кодируется тремя компонентами – красным, зелёным и синим

G = 0 ... 255

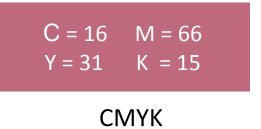
 $B = 0 \dots 255$

 2^{24} = 16,7 млн. цветов

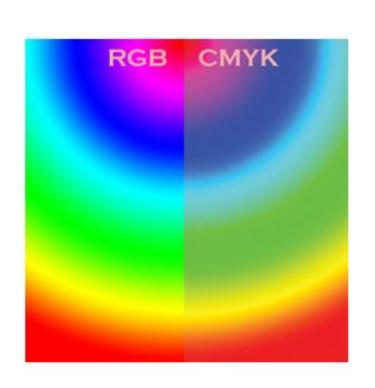

R = 190

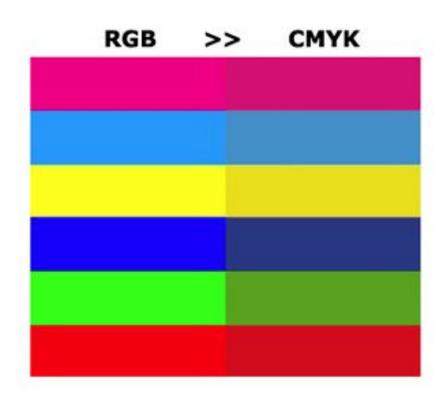
G = 106

B = 124

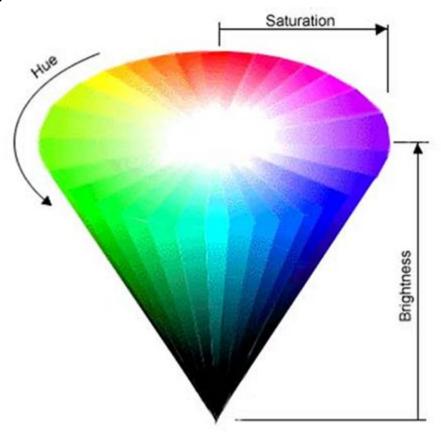

Цветовая модель СМҮК

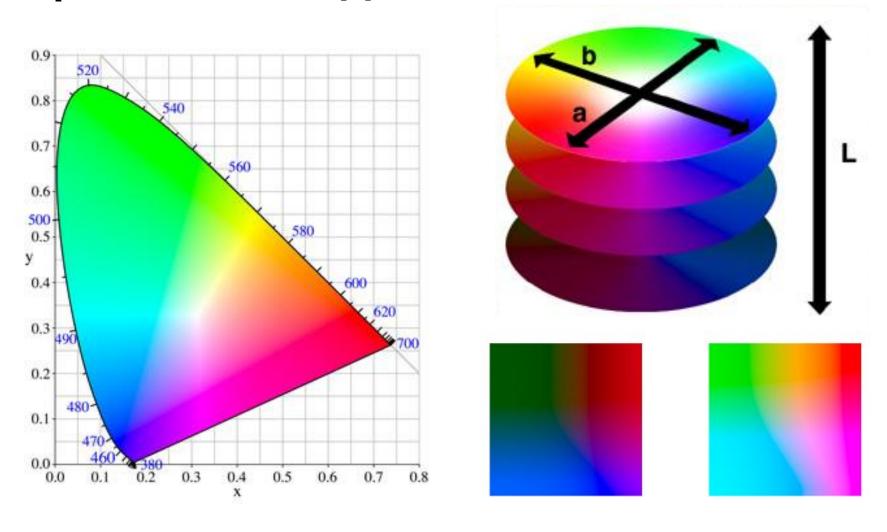
Цветовая модель СМҮК (*Cyan Magenta Yellow BlacK*) – субтрактивная цветовая модель, согласно которой цвет кодируется четырьмя компонентами – голубым, пурпурным, жёлтым и чёрным




#BE6A7C

R = 190 G = 106 B = 124 RGB


Сравнение RGB и CMYK


Цветовая модель HSB

Цветовая модель HSB (Hue Saturation Brightness) – цветовая модель, основанная на трёх характеристиках цвета – цветовом тоне, насыщенности и яркости


- Тон (Hue) конкретный оттенок цвета
- Насыщенность (Saturation) характеристика интенсивности света
- Яркость (Brightness) –
 определятся примесью черной краски, добавленной к данному цвету

Цветовые модели CIE XYZ и CIE L*a*b*

Цветовая модель CIE XYZ

Цветовая модель CIE L*a*b*

Формат ВМР (BitMap Picture)

- можно сохранить плоское (без слоев) изображение в монохромном, индексированном, черно-белом (в режиме Grayscale (Оттенки серого)) или цветном (модель RGB) режиме
- не позволяет включать какие-либо дополнительные элементы или же использовать прозрачность

Формат GIF (Graphic Interchange Format)

- использует 2–256 цветов, один из которых может быть назначен прозрачным
- встроенная компрессия LZW, которая может уменьшить размер файла на 20–40 %
- возможность создания покадровой анимации

Формат JPEG (Joint Photographic Experts Group)

- компрессия с потерей информации; сжатие основано на усреднении цвета соседних пикселей и отбрасывании высокочастотных составляющих в пространственном спектре фрагмента изображения
- сохранить в формате JPEG можно изображения только в режимах Grayscale (Оттенки серого), RGB или CMYK то есть полноцветные изображения.
- не позволяет сохранять никаких дополнительных элементов (слоев, дополнительных каналов), невозможно реализовать прозрачные области изображения

Сохраненное в формате JPEG изображение с высоким (слева) и низким (справа) качеством

Формат PNG (Portable Network Graphics)

- Подформат PNG-8 «замена» формату GIF, практически дублирет его функции, но использует более совершенный механизм компрессии
- Подформат PNG-24 позволяет сохранять изображения в режиме RGB и использовать «плавную» прозрачность с возможностью создания полупрозрачных областей

Формат TIFF (Tagged Image File Format)

- сохраняет изображения в любых цветовых режимах, в него можно включать дополнительные альфа-каналы
- некоторые программы могут сохранять в изображении прозрачные области и слои
- позволяет сохранять файлы без компрессии изображения или задействовав один из алгоритмов (LZW, ZIP, JPEG, CITT)

Формат PSD (PhotoShop Document)

- специализированный формат программы Adobe Photoshop
- файл в формате PSD остается полностью редактируемым
- многие программы поддерживают формат PSD в качестве «дополнительного» и могут открывать и сохранять файлы в этом формате

Формат RAW

• в цифровой фотографии соответствует негативу в плёночной: в нём содержится необработанная, «сырая» информация о пикселях прямо с сенсора цифровой камеры

Методы обработки изображений

Наложение эффектов (размытие, резкость, деформация, шум и др.)

Регулировка уровня яркости и контраста

Яркость – характеристика, определяющая на сколько сильно цвета пикселей отличаются от чёрного цвета

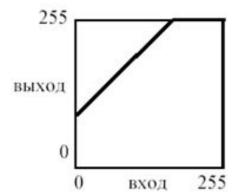
Контраст – характеристика насколько большой разброс имеют цвета пикселей изображения

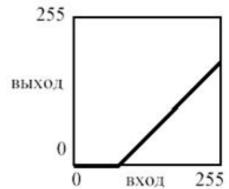
По аналогии с терминами теории вероятности:

- Яркость математическое ожидание значений выборки
- Контраст дисперсия значений выборки

Локальная яркость и локальный контраст – для фрагмента изображения

Цвет пикселя обработанного изобр. = $f_{npeo6pas}$ (Цвет пикселя исход. изобр.) [0, 255]

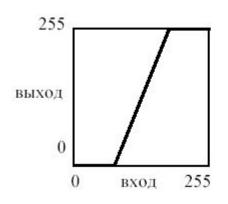

Цвет пикселя обработанного изобр. = $f_{npeofpas}$ (Цвет пикселя исход. изобр.) [0, 255]

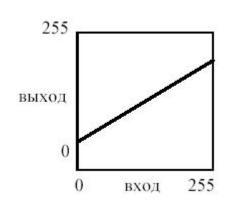

Цвет пикселя обработанного изобр. = f _ (Цвет пикселя исход. изобр.) [0,

255] 255 выход 0

255

вход


Исходное изображение



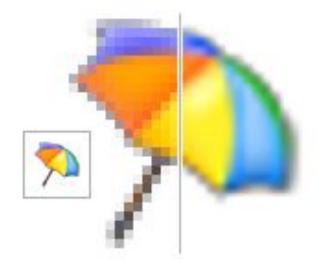
Яркость увеличена

Яркость уменьшена

Исходное изображение

Контраст увеличен

Контраст уменьшен



Масштабирование изображения

Масштабные коэффициенты:

- нормализованная форма (за единицу принимаются размеры исходного изображения)
- процентная форма (нормализованные значения умножаются на 100 %)
- непосредственная форма (новые размеры задаются в пикселях) определение цвета при масштабировании:
- Цвет пикселя в масштабированном изображении принимается равным цвету ближайшего к нему пикселя исходного изображения
- Использование интерполяции (билинейная или бикубическая интерполяция)

Преобразование поворота

Возможные варианты поворота:

- Области изображения, вышедшие за его границы при повороте отсекаются, а незаполненные части заполняются каким-либо цветом.
- Рассчитывается новый размер изображения на основе угла поворота таким образом, чтобы повёрнутое изображение целиком поместилось в новые размеры. Незаполненные части изображения также заполняются каким-либо цветом.

Цифровые фильтры изображений

Цифровой фильтр – алгоритм обработки изображения, позволяет накладывать на изображение различные эффекты

Линейный фильтр

определяется вещественнозначной функцией F, заданной на растре. Данная функция называется ядром фильтра, а сама фильтрация производится при помощи операции дискретной свёртки

$$B(x,y) = \sum_{i} \sum_{j} F(i,j) \cdot A(x+i,y+j).$$

A(x, y) – исходное изображение

B(x, y) – полученное изображение

Линейные фильтры изображений

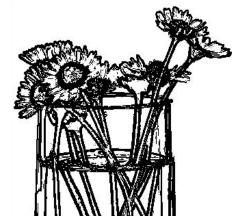
Сглаживающий фильтр – результат размытие изображения, устранение резких цветовых переходов

Гауссовская фильтрация

образом точки при гауссовой фильтрации будет симметричное размытое пятно, с убыванием яркости от середины к краям, что гораздо ближе к реальному размытию от расфокусированных линз

Линейные фильтры изображений

Контрастноповышающий фильтр – повышают контрастность


изображения

Разностный фильтр используются для нахождения границ в изображениях

Векторная графика

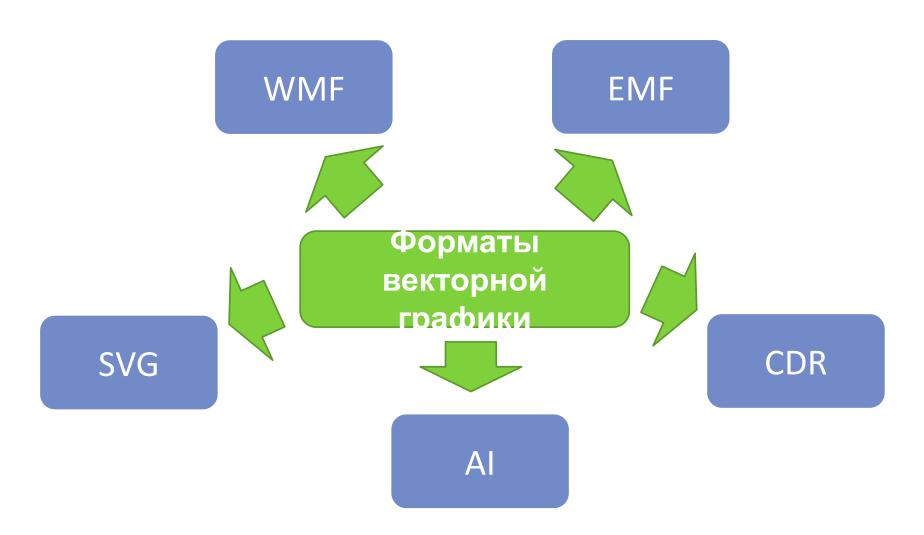
Векторная графика – метод графического представления объекта в виде графических примитивов

- Базовый элемент линия
- Векторная графика объектно-ориентированная графика
- Векторная графика вычисляемая графика

Векторная графика

Достоинства

- можно изменять размер изображений без потери его визуальных качеств
- максимальная точность построенного изображения
- файл с векторным изображением имеет значительно меньший размер по сравнению с растровым изображением
- рисунок имеет высокое качество при печати
- возможность редактирования всех частей векторного изображения
- простой экспорт векторного рисунка в растровый


Недостатки

- отсутствие реалистичности у векторных рисунков
- невозможность использования эффектов, которые можно применять в растровой графике
- практически полная невозможность экспорта растрового рисунка в векторный
- программная зависимость

Векторная графика

Векторные изображения используются:

- создание шрифтов, логотипов, верстка полиграфической продукции
- построение диаграмм, схем, чертежей
- программы 3D-моделирования на основе векторной графики

WMF (Windows MetaFile)

- внутренний формат OC Windows
- не может сохранять некоторые параметры, которые могут быть присвоены объектам в различных векторных редакторах
- отсутствуют средства для работы со стандартизированными цветовыми палитрами, принятыми в полиграфии

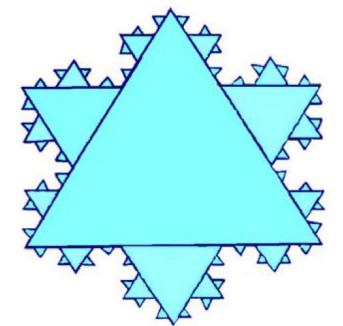
EMF (Enhanced Metafile, расширенный метафайл Windows)

может сохранять и векторную, и растровую информацию в одном файле

CDR (CorelDRAW Document)

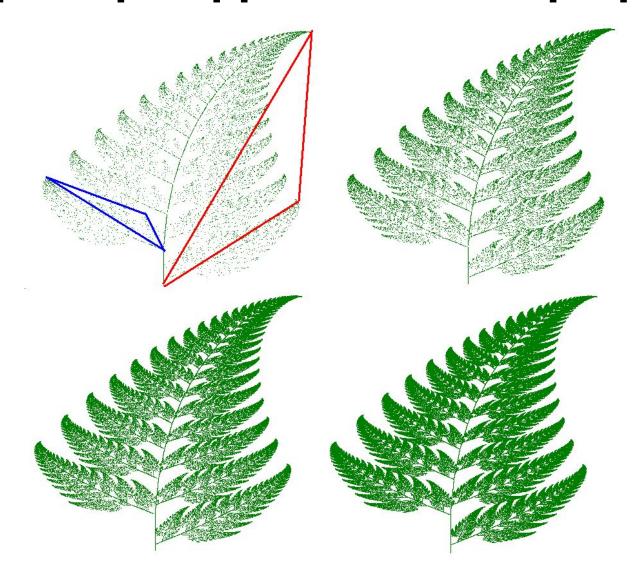
- основной внутренний формат программы CorelDraw позволяет записывать векторную, растровую графику и текст
- используется раздельная компрессия для векторных и растровых изображений
- поддерживается многостраничность
- файлы имеют огромное рабочее поле до 45 метров
- большой объем требуемой памяти и проблемы с совместимостью файлов разных версий формата.

- внутренний формат файла для программы Adobe Illustrator
- в одном файле может содержаться только одна страница, маленькое рабочее поле
- отличается наибольшей стабильностью и совместимостью с языком PostScript фирмы Adobe, на который ориентируются практически все издательскополиграфические приложения


SVG (Scalable Vector Graphics — «масштабируемая векторная графика»)

- основанный на XML формат разметки, предназначенный для описания двухмерной векторной графики, как неподвижной, так и анимированной
- возможность читать и редактировать при помощи обычных текстовых редакторов
- возможность выделять и копировать текст из SVG
- возможность сжатия в SVGZ (через алгоритм GZip)
- SVG поддерживается почти всеми современными браузерами за исключением Internet Explorer 8 и ниже

Фрактальная графика

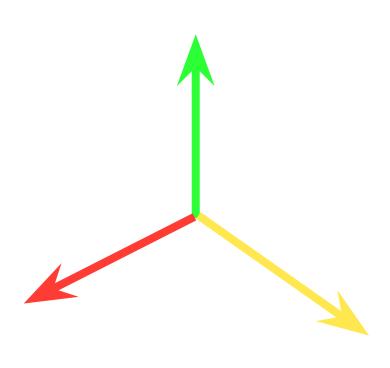

Фрактальная графика основана на автоматической генерации изображений путём математических расчётов

Фрактал - геометрическая фигура, обладающая свойством самоподобия, то есть составленная из нескольких частей каждая из которых подобна всей

Простейший элемент – фрактальный треугольник

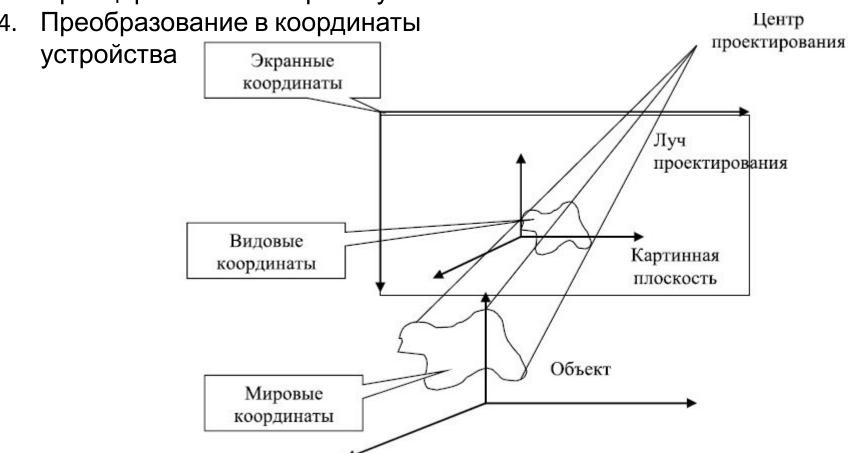
Примеры фрактальной графики

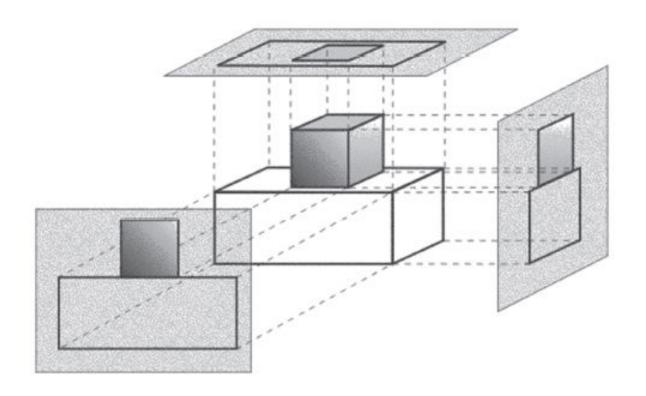
Примеры фрактальной графики


http://sya.deviantart.com/

https://www.behance.net/lindelokse

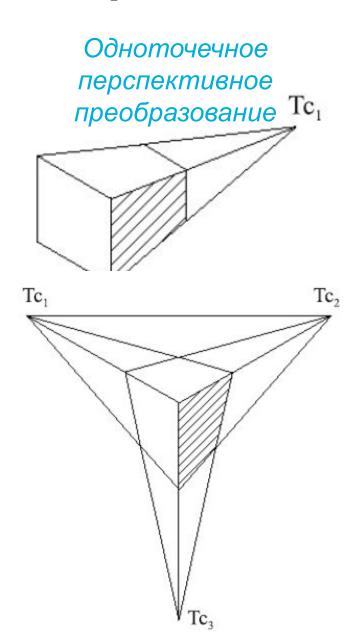
Трёхмерная графика


Трёхмерная графика – раздел компьютерной графики, охватывающий алгоритмы и программное обеспечение для оперирования объектами в трёхмерном пространстве, а также результат работы таких программ



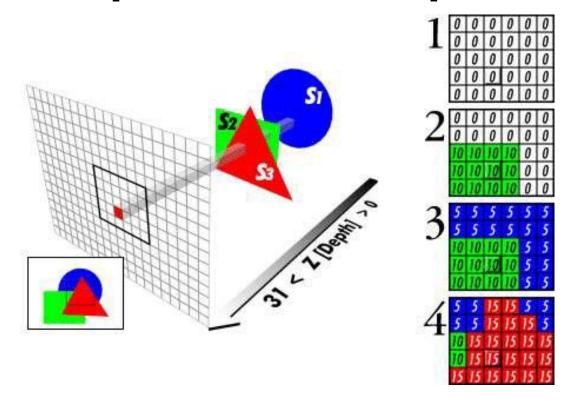
Проектирование трёхмерного объекта

- 1. Примитивы вывода в мировых координатах
- 2. Отсечение по объему видимости
- 3. Проецирование на картинную плоскость



Параллельное проектирование

Оргтографическая проекция


Перспективное проектирование

Трёхточечное перспективное преобразование

Растеризация изображения

Алгоритм Z-буфера

- 1. Заполнить Z-буфер максимальным значением глубины z
- 2. Преобразовать описываемые объекты в растровую форму в любом порядке
- 3. Для каждого объекта
- Для каждого пикселя (x, y) объекта подчитать его глубину z(x, y)
- Сравнить глубину z(x, y) со значением глубины Z-буфер а в этой же позиции
- Если z(x, y) > Z-буфер $(x, y) \rightarrow 3$ анести атрибуты пикселя в буфер кадра и заменить Z-буфер(x, y) на z(x, y), в обратном случае ничего не делать

Закрашивание поверхностей

Метод Гуро

Цвет примитива рассчитывается лишь в его вершинах, а затем линейно интерполируется по поверхности

Метод Фонга

случае строится нормаль к объекту в целом, ее вектор интерполируется по поверхности составляющих примитивов и освещение рассчитывается для каждой точки

Свет в каждой точке представляет сумму компонентов:

- свет, пришедший с обратной стороны поверхности, то есть преломленный свет (Refracted)
- свет, равномерно рассеиваемый поверхностью (Diffuse)
- зеркально отраженный свет (Reflected)
- блики, то есть отраженный свет источников (Specular)
- собственное свечение поверхности (Self Illumination)

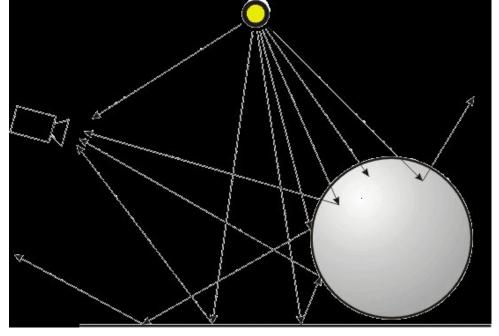
Трассировка лучей

Генерация луча

для каждого пикселя изображения генерируется луч (один из лучей, попадающих на него через оптическую систему)

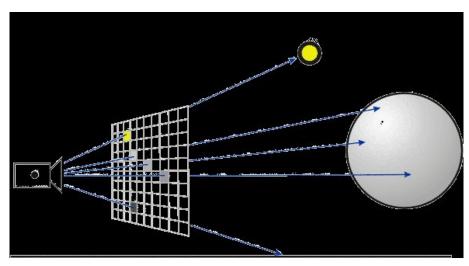
Пересечение

находится пересечение луча с объектами сцены

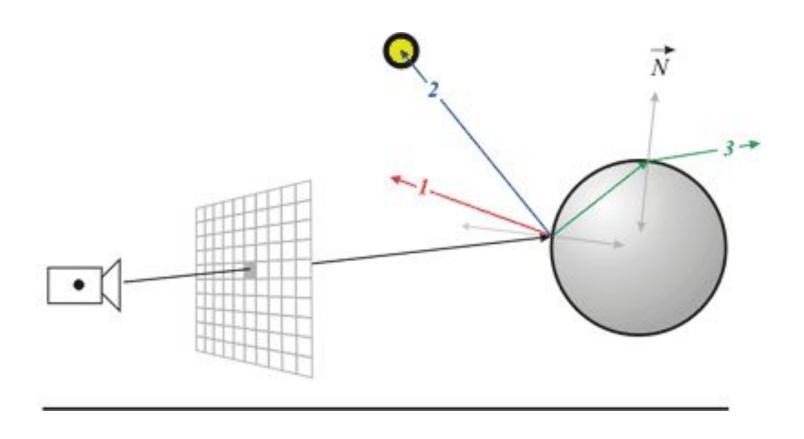

Расчет цвета точки

рассчитывается яркость (цвет) точки пересечения

Трассировка лучей


Прямая трассировка

Лучи должны быть построены от каждого источника освещения ко всем точкам поверхностей всех объектов сцены и отслежены в соответствии с законами отражения и преломления



Обратная трассировка

Луч строится от наблюдателя через видовое окно до первого пересечения с объектом и далее – в соответствии с законами преломления и отражения.

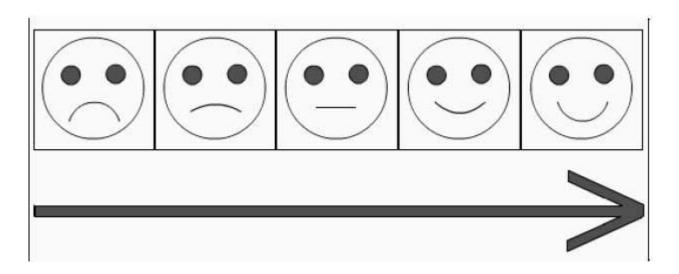
Обратная трассировка

- 1 луч в направлении отражения
- 2 луч в направлении источника света
- 3 луч в направлении преломления прозрачной поверхностью

Анимация и её особенности

Анимация – искусственное представление движения в кино, на телевидение и в компьютерной графике, осуществляемое путем отображения последовательности кадров с определенной частотой, при которой обеспечивается целостное зрительное восприятие образов

Кадр (*frame*) – статическое изображение, соответствующе определенному моменту времени


Частота кадров (frame rate) – количество кадров, демонстрируемых в течение секунды **Анимация и видео**

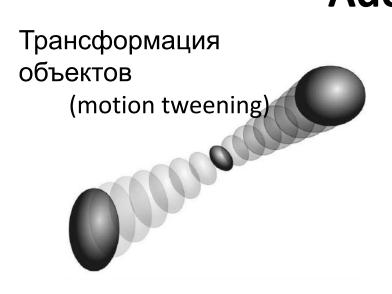
- **Видеосъемка:** записывается непрерывное движение и разбивается на множество дискретных кадров
- **Анимация:** используются независимые рисунки или графические файлы, которые выводятся в определенной последовательности для создания иллюзии непрерывного движения

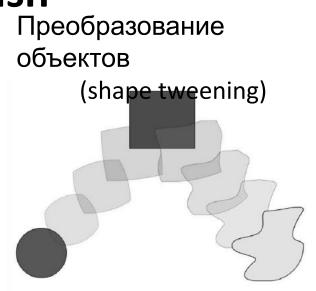
Покадровая анимация

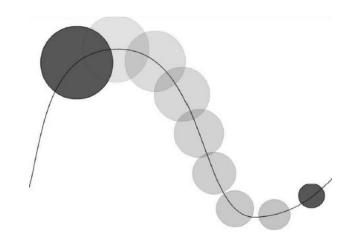
frame by frame

Покадровая анимация – прорисовка всех кадров анимации

Покадровая анимация из пяти кадров


Автоматическое построение промежуточных кадров tweening


В основе – создание опорных кадров и автоматическое построение промежуточных кадров


Трансформационная анимация из пяти кадров, серые кадры формируются программно

автоматическое построение промежуточных кадров в программе Adobe Flash

Движение вдоль пути (motion path tweening)

Программы для создания анимации

Adobe Flash

Альтернативы:

- Swish Max
- A4Desk

Программы для создания мультфильмов:

- Pencil (http://www.pencil-animation.org/)
- Anime studio pro (http://anime.smithmicro.com/)
- TV Paint Animation (http://www.tvpaint.com/v2/content/article/downloads/index.php)