МЯГКИЕ ЛЕКАРСТВЕННЫЕ ФОРМЫ ПЛАСТЫРИ.ТТС

ассистент кафедры УЭФ и ФТ, к.ф.н. Пономарева А.А.

ПЛАСТЫРИ ФАРМАКОПЕЙНАЯ СТАТЬЯ,

ГФ 11, вып. 2. стр.149

- Пластыри лекарственная форма для наружного применения, обладающая способностью прилипать к коже.
- Пластыри оказывают действие на кожу, подкожные ткани и в ряде случаев общее воздействие на организм.
- Пластыри могут быть в виде пластичной массы на подложке и без нее или в виде закрепленной на липкой ленте прокладки с лекарственными веществами.
- В состав пластырной массы в зависимости от назначения пластыря могут входить разрешенные к медицинскому применению натуральный или синтетический каучуки, их смеси, а также другие полимеры, жироподобные вещества, природные масла, наполнители, антиоксиданты и лекарственные вещества.
- Пластырная масса по внешнему виду представляет собой однородную смесь, плотную при комнатной температуре и размягчающуюся, липкую при температуре тела.
- Пластыри без лекарственных веществ в виде липкой ленты (лейкопластыри) используются для фиксирования повязок и других целей.
- Пластыри должны легко сниматься с кожи.
- Состав пластырей, показатели качества и методы их контроля описаны в частных статьях.
- **Упаковка**. Пластыри должны выпускаться в упаковке, предохраняющей их от внешних воздействий и обеспечивающей стабильность в течение установленного срока годности.
- Хранение. В сухом, защищенном от света месте, если нет других указаний в частных статьях.

Определение

Пластыри (Emplastra) — лекарственная форма для наружного применения, обладающая способностью прилипать к коже, оказывающая действие на кожу, подкожные ткани и в ряде случаев общее воздействие на организм.

Общая характеристика

- Пластыри при комнатной температуре имеют вид твердой массы, при температуре тела они размягчаются.
- □ При температуре 65—100 °C плавятся, их можно сплавлять с различными лекарственными и вспомогательными веществами и смешивать с порошкообразными материалами.

Формы выпуска

- 1. В виде пластичной массы на подложке (полотно, шифон, коленкор, бумага и др.);
- 2. В виде твердых пластырных масс (цилиндры, бруски, плитки, палочки);
- 3. В виде жидких растворов (кожные клеи), помещенных в стеклянные флаконы, алюминиевые тубы, аэрозольные баллоны.

Классификации пластырей

- □ По назначению
- □ По составу
- □ По агрегатному состоянию
- □ По приготовлению
- □ По степени дисперсности
- Пластыри бывают дозированными и недозированными

Классификация пластырей по медицинскому назначению

Тип	Эпидерматические	Эндерматические	Диадерматические
Функции, особенности	В качестве перевязочного материала	Лечение заболеваний кожных покровов на месте их наложения	Содержат ЛВ, приникающие через кожу и оказывающие действие на субдермальные ткани
Требования к пластырям	Должны быть липкими, плотно приставать к коже и не вызывать раздражение	Имеют более мягкую консистенцию, чем эпидерматические	Имеют более мягкую консистенцию, чем эпидерматические

Классификация пластырей по составу

Обыкновенные

Каучуковые

Лейкопластырь, лейкопластырь Свинцовые

бактерицидный

Свинцово-смоляные «Салипод»,,.

Перцовый Свинцово-восковые

Горчичники Смоляно – восковые

Главный компонент

мыло свинцовое

- не обладает мягкостью
- •Легко сплавляется со смолами, восками, ЛΒ
- •Устойчивое при хранении

⟨⟨-⟩⟩

•неиндифферентность

ПРИГОТОВЛЕНИЕ ПЛАСТЫРЕЙ В УСЛОВИЯХ ФАРМАЦЕВТИЧЕСКИХ ПРОИЗВОДСТВ

- 1. Подготовительные работы:
 - подготовка пластырной массы;
 - подготовка лекарственных веществ;
- 2. Введение лекарственных веществ в пластырную массу;
- 3. Сушка пластыря;
- 4. Формование пластырной массы;
- 5. Стандартизация;
- 6. Фасовка и упаковка.

Контроль качества пластырей

На всех этапах

- 1. Следят за температурным режимом,
- 2. Проверяют кислотное число в жирах,
- 3. Проверяют качественный состав лекарственных веществ.
- 4. Пластырь не должен быть жирным на ощупь и не должен иметь прогорклого запаха.
- 5. Влажность должна составлять не более 3%.
- 6. Количественное содержание действующих веществ должно соответствовать требованиям НТД.

Простой свинцовый пластырь

Состав

- 10 частей подсолнечного масла
- 10 частей очищенного свиного жира
- □ 10 частей оксида свинца
- Вода дистиллированная q.s.

Смесь свинцовых солей высших жирных кислот (стеариновой, пальмитиновой и

(стеариновой, пальмитиновой и олеиновой)

Простой свинцовый пластырь может применяться как самостоятельная форма, а также входить в состав других пластырей и мази свинцовой (диахильной).

Особенности технологии

- Реакция омыления жиров оксидом свинца
- Используют котлы из нержавеющей стали или эмалированный котел с паровой рубашкой
- □ Нельзя использовать медные котлы
- 1. В котле расплавляют жиры
- 2. В расплавленную смесь жиров вносят суспензию свинца окиси в воде порциями без остатка при постоянном перемешивании и нагреве
- 3. Варка должна производиться при температуре 100—110 °С в течение 2—3 ч.
- 4. Готовую массу переносят в месильную машину, где ее отмывают водой

Свинцово-смоляные пластыри

Пластырь свинцовый сложный

(Emplastrum Plumbi compositum)

- пластыря свинцового простого 85 частей;
- канифоли 10 частей;
- пи масла терпентинного 5 частей.

Свинцово-восковые пластыри

Пластырь эпилиновый 4% (Emplastrum Epilini)	Ртутный пластырь (Emplastrum Hydrargyri)	Пластырь «Уреапласт» (Emplastrum «Ureaplastum»)
•эпилина цитрата 4,0 части; •пластыря свинцового простого 51,0 часть; •ланолина безводного 20,0 частей; •воска 5,0 частей; •воды очищенной 20,0 частей.	 •59 концентрированной серой ртутной мази (84-86%) •16 частей ланолина б\в •150 частей простого свинцового пластыря •25 частей желтого воска 	•мочевины 20,0 частей; •воды 10,0 частей; •пчелиного воска 5,0 частей; •ланолина 20,0 частей; •свинцового пластыря 25,0 частей.
Применяется в качестве депилирующего средства при грибковых заболеваниях кожи	Применяется при лечении местных проявлений сифилиса	Применяется в качестве кератолитического средства при лечении онихомикозов

Смоляно-восковые пластыри

- Основы смоляно-восковых пластырей составляют сплавы смол и воска, в состав могут входить также жиры и углеводороды.
- Мозольный пластырь (Emplastrum ad clavos) имеет в составе:
 - кислоты салициловой 20,0 частей;
 - канифоли 27,0 частей;
 - парафина 26,0 частей;
 - петролатума 27,0 частей.
- Характеристика.
 - ♦ Однородная мягкая, липкая, но не вязкая масса желтого или темно-желтого цвета.
 - ❖ Температура плавления не выше 60 °C.
 - Расплавленный пластырь имеет характерный запах канифоли.
- Применяется в качестве средства для удаления мозолей (кератолитическое средство).

КАУЧУКОВЫЕ ПЛАСТЫРИ

Лейкопластырь (Leucoplastrum)

Состав:

- каучука натурального 25,7 части;
- канифоли 20,35 части;
- цинка оксида 32 части;
- ланолина безводного 9,9 части;
- парафина жидкого 11,3 части;
- неозона Д 0,75 части.

Технология

Лейкопластыри получают на основе каучука путем простого длительного смешивания (в течение 6 ч) отдельно приготовленных:

- резинового клея (раствор в бензине канифоли и каучука);
- пасты антистарителей (гомогенизированная смесь ланолина с антистарителем);
- цинковой основы (гомогенизированная смесь ланолина, воска и цинка окиси).

КАУЧУКОВЫЕ ПЛАСТЫРИ

Лейкопластырь бактерицидный (Emplastrum adhaesivum bactericidum)

состоит из марлевой прокладки, пропитанной раствором антисептика и имеет фиксирующую лейкопластырную ленту

Состав антисептика:

- фурацилина 0,02%;
- синтомицина 0,08%;
- бриллиантового зеленого 0,01%
 в 40% этиловом спирте)

Перцовый пластырь

(Emplastrum Capsici).

- Однородная липкая масса желтобурого цвета, своеобразного запаха, нанесенная на бумагу или ткань, размером 12х18, 10х18,8х18 см, в пакет вкладывается по две пары пластырей, проложенных защитным слоем целлофана.
- Применяется как обезболивающее средство при подагре, артрите, радикулите, люмбаго и как отвлекающее средство при простудных заболеваниях.

КАУЧУКОВЫЕ ПЛАСТЫРИ

Кожные клеи, или пластыри жидкие (Emplastra liquida)

Коллодий (Collodium).

вязкие жидкости, оставляющие на коже после испарения легколетучего растворителя эластичную липкую прочную пленку.

Состав

- □ коллоксилина 4,0 части;
- при спирта этилового 96% 20,0 частей;
- эфира медицинского 76,0 частей.

Бесцветная или слегка окрашенная в желтоватый цвет, прозрачная или слегка опалесцирующая сиропообразная жидкость с запахом эфира.

КЛАССИФИКАЦИЯ ПЛАСТЫРЕЙ ПО АГРЕГАТНОМУ СОСТОЯНИЮ

- При комнатной температуре имеют плотную консистенцию, при температуре тела становятся мягкими и липкими
- Тонкий слой массы, нанесенный на тканевую или бумажную подложку

вязкие жидкости, оставляющие на коже после испарения легколетучего растворителя эластичную липкую прочную пленку

Твердые пластыри

Жидкие пластыри

ТТС. ОБЩАЯ ХАРАКТЕРИСТИКА

ОПРЕДЕЛЕНИЕ

- Трансдермальные терапевтические системы это дозированная лекарственная форма, представляющая собой небольшого размера пленку диаметром 1,8 см и площадью 2,5 см2.
- □ ТТС в основном выпускаются в форме пластырей,

ТРЕБОВАНИЯ

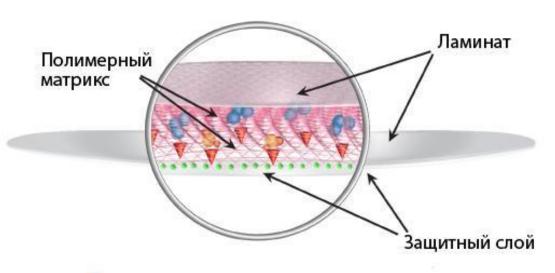
- □ должны обладать хорошей липкостью,
- плотно прилегать к коже и не раздражать ее.

TTC = ochoba + ЛВ

ПРЕИМУЩЕСТВА ТТС

- □ Быстрота действия лекарственного средства;
- Нет эффекта «первого прохождения через печень»;
- □ Возможность снизить частоту назначения и дозу;
- постоянство концентрации лекарственного вещества;
- Возможность немедленного прекращения действия ЛВ;
- □ Удобство для пациента;
- Отсутствие неприятных ощущений (рвотные позывы при приеме таблеток, боль при уколах, липкость и загрязнения одежды при использовании мазей и др.);
- Возможность точечной доставки действующих веществ в конкретные зоны в высокой концентрации (например, при болях в суставах);

Недостатки ТТС


- Возможность возникновения раздражения или аллергической реакции;
- □ Действуют медленнее, чем инъекционные ЛФ;
- Подходит только для сильнодействующих веществ, способных проникать в кожу в терапевтически необходимом количестве.

СОСТАВ ТТС (ЗАРУБЕЖНАЯ ФАРМАКОПЕЯ)

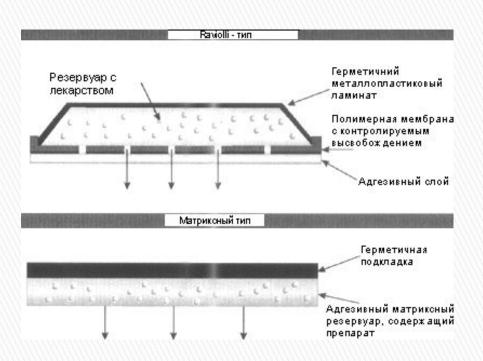
Полимерный матрикс/Резервуар активных веществ

- натуральные полимеры (производные целлюлозы, хитозан и т.д.) и
- синтетические полимеры (полиакрилат, полипропилен и т.д.)
- □ Активные вещества
- Энхансеры повышают проходимость рогового слоя, взаимодействуя со структурными компонентами эпидермиса (протеинами, липидами)
- Адгезивный слой обеспечивает тесный контакт между трансдермальной системой и поверхностью кожи. Он должен хорошо прилипать и держаться, но при этом легко сниматься, не причиняя травмы коже. Для этой цели широко используют полиакрилаты и силикон.
- □ Ламинат должен обладать высокой гибкостью, пропускать кислород и не мешать испарению влаги (винил, полиэтилен и полиэстер).
- **Защитный слой -** удаляется непосредственно перед нанесением трансдермального пластыря на кожу.

Схема строения трансдермальных транспортных систем TTC

Активные вещества

Энхансеры



Адгезивный слой

Правила выбора молекулы для трансдермальной доставки

- **молекула лекарства** должна обладать сродством и к гидрофобному роговому слою, и к гидрофильной дерме.
- **молекула лекарства** должна быть нейтральной, так как позитивный или негативный заряд молекулы может затормозить ее продвижение через гидрофобную среду
- молекула лекарства должна обладать достаточной растворимостью в гидрофобной и гидрофильной среде
- **молекула лекарства** должна быть небольшой (молекулярный вес не должен превышать 500 Дальтон), для того чтобы обеспечить необходимую скорость ее продвижения

Типы ТТС

- □ "равиолли" (raviolli systems),
 изготавливаются путем введения
 раствора или геля с лекарством в
 пространство между основной
 мембраной и резервуаром с
 лекарством
- матриксные системы (matrix systems) содержат клей, склеивающий при надавливании, выполняет различные функции: прилипание, хранение, высвобождение лекарства и контроль за уровнем высвобождения препарата

ВСПОМОГАТЕЛЬНЫЕ ВЕЩЕСТВА В ТТС

🛘 По выполняемой функции

- Носители ЛВ (жидких, твердых, газообразных)
- Собственно ВВ
 - Пластификаторы
 - Пенетраторы
 - Загустители
 - Наполнители
 - Адгезивы
 - Консерванты
 - Красители
 - Пролонгаторы
 - Солюбилизаторы
 - Эмульгаторы

□ По происхождению

- Природные
 - растительного происхождения (агар-агар, альгинаты),
 - животного происхождения (желатин, коллаген, хитозан),
 - микробного происхождения (полисахариды)
- Синтетические (Полиакрилаты, поликарбонаты, ПВС, ПВП, ППГ, ПЭГ)
- Можучитетические (МЦ, Na-КМЦ, АЦ и др.)

Требования к вспомогательным веществам

- □ Биосовместимость с кожей.
- Отсутствие токсичных низкомолекулярных веществ, выделяющихся из полимеров и способных проникать через кожу.
- □ Отсутствие токсических растворителей.
- Адгезив и/или полимерная адгезионная матрица не должны обладать местнораздражающим и аллергизирующим действием.

Технология ТТС

- □ Подложка ткань, бумага, полимерные пленки, металлизированные покрытия
- Резервуар = носитель (полимерные материалы)
- Вещества, способствующие растворению ЛВ (этанол, вода очищенную, диметилсульфоксид, метиловый эфир этиленгликоля, глицеринмоноолеат или церинтриолеат)
- Мембраны (полимерные пленки, полученные из полипропилена, сополимера этиленавинилацетата, блоксополимеров, силиконовые смолы и др, например, диализная мембрана из синтетически модифицированной целлюлозы.
- □ Промоторы пенетрации
 - высокодисперсный диоксид кремния
 - водорастворимое биологически активное кремнийорганическое соединение формулы [-Si(CH3)2-O-CH2-CH(OH)-CH2-O-]n, полученное при нагревании глицерина с диметилдиэтоксисиланом или гексаметилдисилазаном с последующей ректификацией

$$(CH_3)_2Si-O-CH_2-CH(OH)-CH_2-O$$

Механизм действия ТТС

- В ТТС происходит пассивная диффузия ЛВ из ТТС в организм через неповрежденную кожу и далее в системный кровоток в соответствии с градиентом концентраций.
- В результате аппликации ТТС в организм постоянно подается поток ЛВ, аналогично тому, как это происходит в случае инфузии с помощью капельницы.
- □ Подача ЛВ из ТТС происходит непрерывно в течение нескольких суток в зависимости от медицинских показаний и удобства применения.

ПРИМЕРЫ ТТС

Нитроглицерин

трансдермальное назначение позволяет поддерживать необходимую системную концентрацию в крови в течение 12–14 часов

Клонидин

на протяжении семи дней (оральное назначение клонидина требует 2–3-разового приема)

Фентанил

для купирования хронических болей у онкологических больных, обеспечивает длительную (трехдневную) анальгезию.

Сердечно-сосудистые заболевания

Онкологические заболевания

КОНТРОЛЬ КАЧЕСТВА ТТС

Производство:

В производстве, упаковке, хранении должны быть соблюдены требования ОФС 42-0067-07 «Микробиологическая чистота»

Испытания:

- 1. Растворение.
- 2. Определение количественного содержания ЛВ.
- 3. Однородность дозирования.
- 4. Определение остаточных органических растворителей.
- 5. Подлинность

Хранение:

В сухом, защищенном от света месте, при комнатной температуре, если нет других указаний.

Маркировка:

На индивидуальной упаковке указывают

- название препарата, площадь ТТС, содержание ЛВ в одной ТТС,
- количество подаваемого ЛВ в сутки,
- нормативное время аппликации одной ТТС,
- номер серии,
- ерок годности.

Пути совершенствования ТТС

- Использование веществ, облегчающих транспортировку лекарств через кожу;
- □ Расширение номенклатуры растворителей;
- Физико-химические модификации молекулы лекарственного средства, использование «пролекарств»;
- □ Расширение ассортимента ЛВ, применяемых в ТТС;
- □ Использование физических методов

Медицинские карандаши. Характеристика лекарственной формы

Определение

Медицинские карандаши — твердая лекарственная форма для наружного применения, имеющая вид цилиндрических палочек длиной до 5-6 см и толщиной 4-8 мм или сферических конусов, округло заостренных с одного конца, массой от 0,5-0,6 до 10 г.

Требования к карандашам

- При употреблении поверхность карандашей должна растворяться или постепенно стираться без повреждений и травмирования пораженного участка кожи.
- При этом сами карандаши не должны ломаться, крошиться, а рабочая поверхность карандаша должна быть гладкой, без «раковин».

ПРИМЕНЕНИЕ МЕДИЦИНСКИХ КАРАНДАШЕЙ

- Для остановки мелких кровотечений при порезах (бритье),
 для прижиганий.
- В форме карандашей выпускаются некоторые обезболивающие и отвлекающие вещества (ментол, новокаин), антисептические средства (серебра нитрат, квасцы алюмокалиевые, кислота салициловая, ксероформ).

Получение медицинских карандашей

- □ Выливанием,
- □ Прессованием,
- □ Выкатыванием и
- □ Погружением (маканием).

Современные формы медицинских карандашей

- механические с подачей густой мазеобразной массы на кисточку,
- □ специальные карандаши, похожие на фломастер,
- □ карандаши пеналы.

- □ Плавленые карандаши
- □ Плавлением солей получаются карандаши по следующим прописям:
- Карандаши квасцовые. Содержат 0,6 г алюмокалиевых квасцов и 0,025 г глицерина.
- □ Карандаши кровоостанавливающие. Масса 1,0 и 10,0 г. Состав: квасцов алюмокалиевых 75 частей, алюминия сульфата 15 частей и железа хлорного 10 частей.
- □ Карандаши ляписные. Масса 0,5—0,6 г. Состав: серебра нитрата 1 часть и калия нитрата 2 части.

ПОЛУЧЕНИЕ КВАСЦОВЫХ КАРАНДАШЕЙ

- Алюмокалиевые квасцы высыпают в фарфоровый сосуд и нагревают.
- □ При 95 100 °С квасцы расплавляются в собственной кристаллизационной воде, после чего к ним добавляют глицерин и быстро разливают в формы, предварительно смазанные вазелиновым маслом.
- □ Остывание массы длится 5—10 мин, затем формы развинчивают, карандаши вынимают, очищают от заусениц и излишков кристаллов.
- Далее их проверяют на чистоту и качество выливания и вставляют в пластмассовые пеналы.

ПОЛУЧЕНИЕ ЛЯПИСНЫХ КАРАНДАШЕЙ

- смешивают измельченные калия нитрат и серебра нитрат, затем к смеси добавляют 0,1% концентрированной азотной кислоты, после чего расплавляют в фарфоровом сосуде при 250 – 260°C.
- □ Расплавленную массу быстро разливают в нагретые до 50
 − 70 °С формы, предварительно протертые тальком.
- Масса карандаша 0,5 0,6 г.
- □ Отпускают в стеклянных трубках из оранжевого стекла.
- Карандаши, приготовленные из одного серебра нитрата, очень хрупки; сплавлением с нитратом калия достигается необходимая твердость палочек.

Карандаши из гидрофильных масс

Купоросные карандаши.

- **Macca** 0,7—0,8 г.
- Состав:
 - меди сульфата 98 частей и желатина 2 части.
 - □ Технология:
 - Массу для карандашей готовят смешиванием порошка меди сульфата с раствором 2 частей желатина в 18 частях воды.
 - Полученную тестообразную массу формуют в карандаши выкатыванием.
 - Полученные палочки разрезают на цилиндрики длиной 17-20 мм и сушат при температуре 20-25 °C в течение 15—20 ч.
 - После сушки карандаши закругляют с одного конца обтачиванием и укрепляют в пеналах из пластмассы с помощью воскового клея.

Карандаши из жировых масс

Карандаши ментоловые или мигреневые

- Macca 5,0 и 10,0г.
- Состав: ментола 1 часть и парафина 4 части.
- Технология
 - $^{\circ}$ в котле с паровой рубашкой расплавляют парафин и, перемешивая, растворяют в нем ментол при температуре не выше $50-60^{\circ}$ C.
 - Еще горячим раствор процеживают через ткань и тотчас разливают по формам, установленным на льду.
 - Гнезда заливают с некоторым избытком.
 - Поверхность гнезд предварительно смазывают мыльным спиртом или глицерином для облегчения вынимания карандашей из формы.
 - После остывания в течение 20 − 30 мин формы очищают от излишка массы и развинчивают.
 Извлеченные карандаши вставляют в пенал из пластмассы или завертывают в фольгу и пергаментную бумагу и упаковывают в коробки по 10 шт.

Мазевые карандаши

- Мазевые карандаши могут быть приготовлены по типу губных помад.
- Наряду с хорошей способностью к освобождению лекарственных веществ они должны обладать и определенной прочностью и мажущей способностью.
- Прописи основ, удовлетворительных по формообразующим свойствам и обеспечивающих оптимальную доступность препаратов:
 - для новокаина и салициловой кислоты ланолина 2 части, воска желтого 1 часть, масла подсолнечного 1 часть;
 - для дерматола, серы и ксероформа спермацета 3 части, парафина 7 частей.

Технология:

- методов выливания и прессования аналогично получению цилиндрических суппозиториев.
- □ Упаковывают карандаши в пластмассовые пеналы с крышкой.

Классификация по способу применения

- □ Кровеостанавливающий карандаш состава:
 - ∘ квасцов 20%,
 - алюминия сульфата 78%,
 - \circ кальция оксида 2%.
- Репеллентные карандаши. Одним из таких препаратов является ДЭТАкарандаш
- □ Косметические антибактериальные карандаши.
- □ Противопростудные карандаши
- □ Стоматологические карандаши

Вспомогательные вещества в карандашах

- □ Формообразующие и уплотняющие вещества:
 - пчелиный воск,
 - парафин,
 - масло какао,
 - полиэтиленгликоль 1500 (ПЭГ 1500, ПЭГ 4000, 6000).

Пластификаторы

- масло персиковое
- \circ ПЭО 400,
- пропиленгликоля 1,2.
- □ Поверхностно- активных вещества

Материальный баланс

Уравнение материального баланса

$$G1 = G_2 + G_3 + G_4 + G_5$$

Технологический выход η

$$\eta = (G_2/G_1)*100\%$$

Технологическая трата (Σ)

$$\Sigma = (G_5/G_1)100\%$$

Расходный коэффициент (К расх)

$$\mathbf{K}_{\text{pacx.}} = \mathbf{G}_1 / \mathbf{G}_2$$

G₁ - масса исходных материалов;

G, - готового продукта;

G₃ - побочных продуктов;

 G_{Λ} - отбросов;

G₅ - материальных потерь

СИТУАЦИОННЫЕ ЗАДАЧИ

- □ При изготовлении 40 кг пластыря свинцового сложного получено 38 кг готового продукта. Составьте материальный баланс, рассчитайте выход, трату, расходный коэффициент и расходные нормы на получение 40 кг пластыря. Изложите технологию пластыря.
- □ Рассчитайте расходные нормы на изготовление 20 ментоловых карандашей, если масса карандаша 5 г и расходный коэффициент равен 1,030. Изложите технологию карандашей.
- При изготовлении 80 кг эпилинового пластыря получено 76 кг готового продукта. Составьте материальный баланс, рассчитайте выход, трату, расходный коэффициент и расходные нормы на получение 80 кг пластыря. Изложите технологию пластыря.

СИТУАЦИОННЫЕ ЗАДАЧИ

- □ Составьте расходные нормы на получение 30 кровоостанавливающих карандашей, если масса карандаша 10 г и расходный коэффициент равен 1,008. Изложите технологию карандашей.
- □ При изготовлении 120 кг мозольного пластыря получено 110 кг готового продукта. Составьте материальный баланс, рассчитайте выход, трату, расходный коэффициент и расходные нормы на получение 120 кг пластыря. Изложите технологию пластыря.
- Составьте расходные нормы на получение 200 карандашей ляписных, если масса одного карандаша равна 0,55 г и коэффициент расходный равен 1,035. Изложите технологию карандашей.
- При изготовлении 90 кг клеола получено 85 кг готового продукта. Составьте материальный баланс, рассчитайте выход, трату, расходный коэффициент и расходные нормы на получение 90 кг пластыря. Изложите технологию пластыря.
- □ Составьте расходные нормы на получение 50 ментоловых карандашей, если масса карандаша 10 г, коэффициент расходный 1,120. Изложите технологию карандашей.

СИТУАЦИОННЫЕ ЗАДАЧИ

- □ Составьте расходные нормы на получение 40 квасцовых карандашей, если масса одного карандаша равна 3,3 г и расходный коэффициент равен 1,040. Изложите технологию карандашей.
- Составьте расходные нормы на получение 45 кг мозольного пластыря, если расходный коэффициент равен 1,650.
 Изложите технологию пластыря.
- Составьте расходные нормы на получение 30 кг эпилинового пластыря, если расходный коэффициент равен 1,084.
 Изложите технологию пластыря.
- □ Рассчитайте необходимое количество масла мятного для получения 100 мигреневых карандашей, если масса одного карандаша 10 г, а масло мятное содержит 40% ментола.