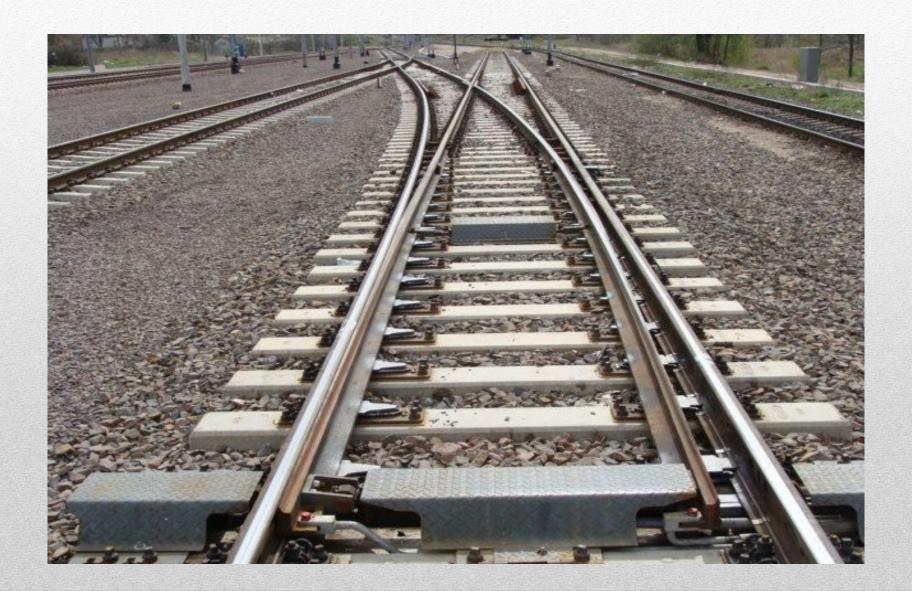
НАГЛЯДНО-ДЕМОНСТРАЦИОННЫЙ МАКЕТ РАБОТЫ ИЗОЛИРУЮЩЕГО СТЫКА

Авторы:


Корольков Алексей Владимирович Медведев Иван Алексеевич студенты ЧИПС УрГУПС Научный руководитель:

Стёпин Александр Владимирович, преподаватель ЧИПС УрГУПС

Рельсовая цепь

- Рельсовая цепь состоит из рельсовой линии и подключенным к ней аппаратуры передающего (питающего) и приемного (релейного)концов.
- Составными частями рельсовой линии являются:
- рельсовой нити (пути)
- стыковых соединителей
- дроссель -трансформаторов
- изолирующие стыки

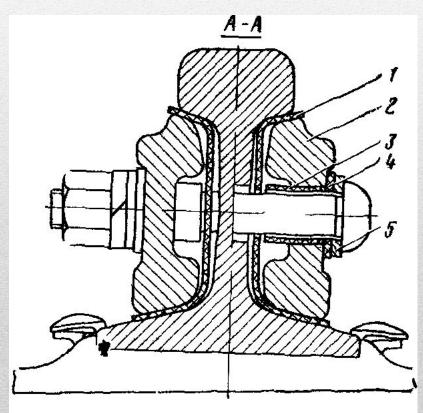
Рельсовая нить

Стыкосоединитель

• Устройство, предназначенное для обеспечения пропуска по рельсам сигнального и тягового токов на участках железных дорог с электрической тягой

Дроссельтрансформатор

Изолирующий стык


Изолирующий стык

• Стыковое соединение рельсов, которое устанавливается вместо нормального и служит для электрической изоляции одного рельса или одного рельсового участка от смежного с ним. При рельсовых цепях служат для разграничения изолированных секций.

На дорогах России наибольшее распространение получили изолирующие стык с металлическими объемлющими накладками. Прочность и жесткость объемлющих накладок позволяет применять конструкцию стыка на весу. Изоляция рельсов обеспечивается постановкой специальных прокладок под накладки и подкладки, а также втулок на болты из фибры, текстолита или полиэтилена. В зазор между рельсами также вставляют изолирующую прокладку, имеющую очертание, соответствующее профилю рельса

Изолирующий стык с объемными металлическими накладками

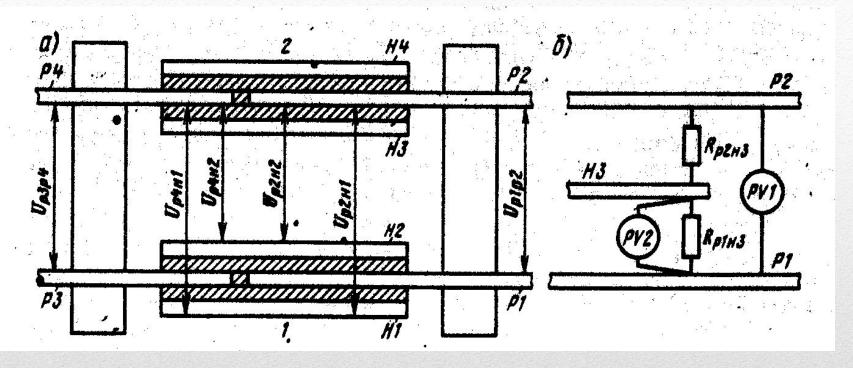
- 1 Прокладка боковая;
- 2 Накладка;
- 3 Втулка;
- 4 Планка под болты;
- 5 Стопорная планка;
- 6 Прокладка стыковая

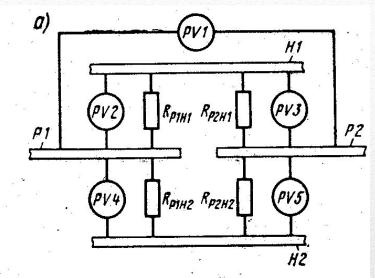
В уравнительных пролетах бесстыкового пути получили широкое распространение клееболтовые изолирующие стыки с двухголовыми накладками). В таких стыках используются типовые двухголовые шестидырные накладки, простроганные по верхней и нижней граням, и специальные накладки, облегающие пазуху рельсов (полнопрофильные накладки)

Клееболтовой изостык

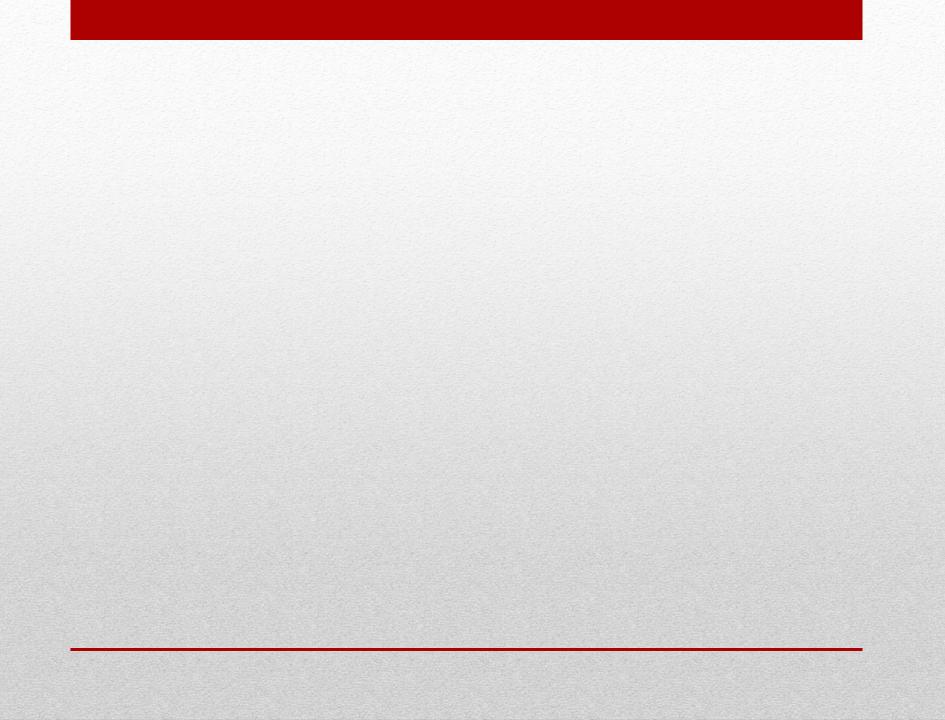
ИЗОЛИРУЮЩИЕ СТЫКИ С КОМПОЗИТНЫМИ НАКЛАДКАМИ АПАТЭК

Композитные накладки "АпАТэК" предназначены для электрической изоляции стыков железнодорожных звеньевых и бесстыковых путей с рельсами всех типов. Они имеют ряд преимуществ по сравнению с остальными видами изостыков:


- прочность и высокие усталостные характеристики;
- коррозионная стойкость и низкое влагонасыщение;
- стойкость к кислотам и щелочам, нефтепродуктам и маслам;
- высокие характеристики грибостойкости.


Самым ненадежным элементом в рельсовой цепи является изостык. В 2014 году отказы по изостыкам составляли 29,7% от общих отказов в рельсовой цепи. Одной из основных причин отказа изолирующих стыков является закорачивание стыка металлической стружкой вследствие воздействия магнитного поля, создаваемого намагниченными торцами рельсов, разделенных изолирующим стыком.

Проверка исправности изолирующих элементов рельсовых цепей


- Наиболее характерным отказом изолирующего стыка с металлическими накладками является нарушение боковой изоляции в болтах накладок. Поэтому состояние изолирующих стыков контролируется в основном измерением "рельс-накладка". Исходя из того, что нормативное сопротивление изоляции 50 Ом, можно проверять сопротивление изоляции накладки вольтметром с внутренним сопротивлением 50 Ом. При отсутствии такого прибора параллельно входу высокоомного вольтметра устанавливают резистор сопротивлением 51 Ом.
- При автономной тяге измерение стыка 1 сводится к определению напряжений

• Если напряжения $U_{p2H1} < 0.5 \ U_{p1,p2}$ и $U_{p2H2} < 0.5 \ U_{p1,p2}$, а $U_{p4H1} < 0.5 \ U_{p3,p4}$ и $U_{p4H2} < 0.5 \ U_{p3,p4}$, то сопротивление изоляции накладки H1 и H2 относительно рельсовых нитей PI и P3 больше $50 \ Om$, т. е. соответствует нормативному. Если хотя бы одно из указанных неравенств не выполняется, то изоляция накладок H1 или H2 относительно рельса PI или P3 нарушена.

- Сопротивление изоляции "рельс-накладка" можно определить с помощью пяти измерений в соответствии со схемами и последующего расчета.

