Министерство образования и науки, молодежи и спорта Украины Харьковская национальная академия городского хозяйства

Кафедра водоснабжения, водоотведения и очистки вод

Дисциплина: «Насосные и воздуходувные станции»

Лекция № 1

«КЛАССИФИКАЦИЯ, ОСНОВЫ КОМПОНОВКИ И ОБОРУДОВАНИЕ НАСОСНЫХ СТАНЦИЙ»

ПРЕПОДАВАТЕЛЬ: ДОЦ. ШЕВЧЕНКО ТАМАРА АЛЕКСАНДРОВНА

ХАРЬКОВ - 2012

Список основной литературы:

- □ Лобачев П.В. Насосы и насосные станции / П.В.
 Лобачев М.: Стройиздат, 1990. 320 с.
- □ Калинушкин М.П. Насосы и вентиляторы / М.П. Калинушкин М.: Высшая школа, 1987. 176 с.
- □ Карелин В.Я. А.В. Насосы и насосные станции / В.Я. Карелин, А.В. Минаев М.: Стройиздат, 1986. 320 с.
- МУ до практичних занять і самостійної роботи з дисципліни "Насосні і повітродувні станції" - № 2049.

Вопросы, рассматриваемые на лекции:

- Классификация насосных станций.
- Принципиальные схемы компоновки насосных станций.
- Схемы компоновок насосных агрегатов в зданиях насосных станций.
- Трубопроводная арматура насосных установок и станций.
- Контрольно-измерительные приборы и устройства насосных станций.
- Грузоподъемное оборудование насосных станций.

Классификация насосных станций

Насосными станциями называют здания или помещения, в которых расположены насосные агрегаты, соединяющие их трубопроводы, арматура, силовое электрооборудование, контрольно-измерительные приборы, грузоподъемное вспомогательное оборудование, обеспечивающие нормальную работу насосных агрегатов, их ремонт или замену.

Водопроводная НС

Канализационная НС

Насосные станции по назначению:

Водопроводные

1-го и 2-го подъема

подкачивающие (повысительные)

циркуляционные

Канализационные

районные

главные

Ирригационные

Дренажные

В зависимости от характера обслуживаемых объектов различают:

HC для противопожарных целей

- насосные станции хозяйственно-питьевых водопроводов - производственные насосные станции, подающие воду на промышленные предприятия, электростанции, железнодорожные узлы и т. п.

По надежности действия водопроводные насосные станции согласно нормам подразделяют на три категории:

Станции первой категории - перерыв в подаче насосной станции недопустим, так как это может привести к значительному материальному ущербу (повреждению технологического оборудования, расстройству сложного технологического процесса и т.д.).

Относят насосные станции противопожарных водопроводов, а также объединенных хозяйственно-противопожарных или производственно-противопожарных водопроводов.

Станции второй категории - перерыв в подаче воды допустим на время, за которое обслуживающий персонал успеет включить резервные агрегаты.

насосные станции, ОТНОСЯТ имеющие В системе водоснабжения емкость необходимым противопожарным запасом обеспеченным воды И расчетным напором, а также населенных пунктов с числом жителей более 3000 человек при воды на наружное расходе пожаротушение 20 л/с.

Станции третьей категории - перерыв в подаче воды допустим для ликвидации аварии (но не более 24 ч).

относят насосные станции хозяйственнопротивопожарных водопроводов и населенных пунктов с числом жителей менее 3000 человек расходе воды на пожаротушение до 20 л/с, а насосные также станции, подающие воду на орошение, поливочные нужды, вспомогательные цехи промышленных предприятий ИТ.П.

Число резервных агрегатов в насосных станциях зависит от категории станции

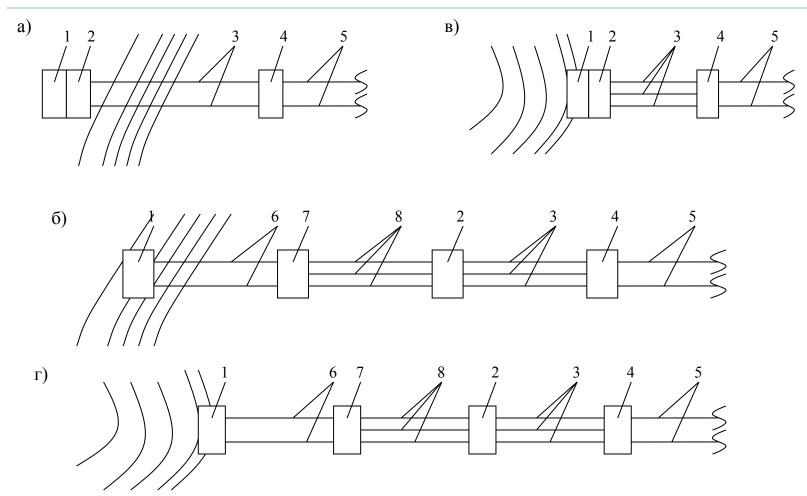
Число рабочих	Число резервных агрегатов на станции		
агрегатов каждой группы насосов (включая пожарные)	первой категории	второй категории	третьей категории
1	2	1	1
2 или 3	2	1	1
4-6	2	2	1
7-9	3	3	2
10 и более	4	4	3

Для гарантированной надежной работы насосной станции необходимо обеспечить ее бесперебойное электроснабжение. Это достигается подключением силовой установки станции от двух независимых источников питания.

Канализационные насосные станции классифицирует

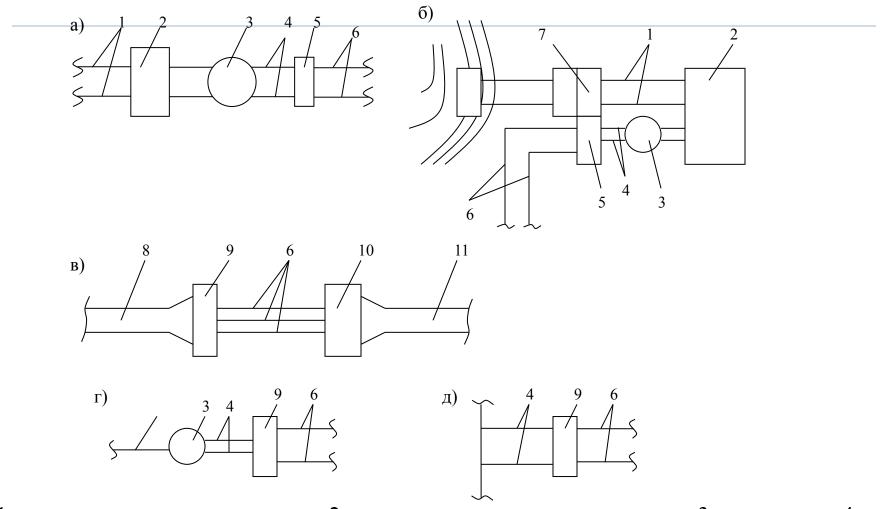
По расположению приемного резервуара относительно машинного зала различают:

- насосные станции с раздельным расположением резервуара;
- совмещенные, когда в одном здании размещен резервуар с решетками и прочим оборудованием и машинный зал.

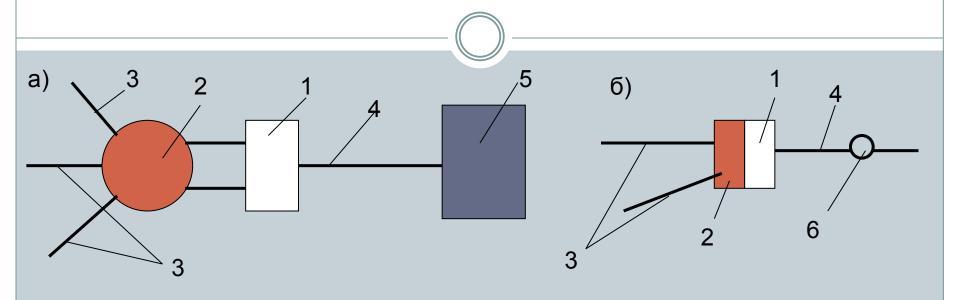

По высоте расположения оборудования относительно уровня земли как водопроводные, так и канализационные станции подразделяют на

- наземные,
- полузаглубленные,
- заглубленные,
- *шахтного типа*, т. е. расположенные на большой глубине.

По степени автоматизации различают:

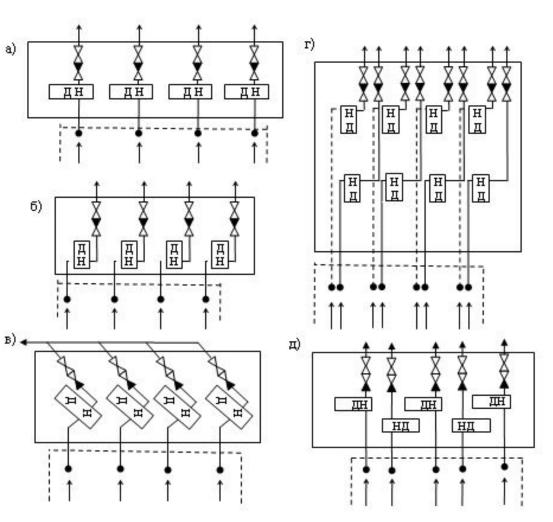

- насосные станции с ручным управлением,
- полуавтоматизированные, в которых некоторые операции по управлению насосными агрегатами выполняет обслуживающий персонал,
- автоматизированные
- управляемые на расстоянии (так называемые телеуправляемые станции).

Принципиальные схемы компоновки насосных станций 1-го подъема


- 1 водозаборное сооружение; 2 насосная станция; 3 напорные трубопроводы; 4 камера переключений; 5 водоводы; 6 самотечные линии; 7 водоприемник; 8
- всасывающие трубы

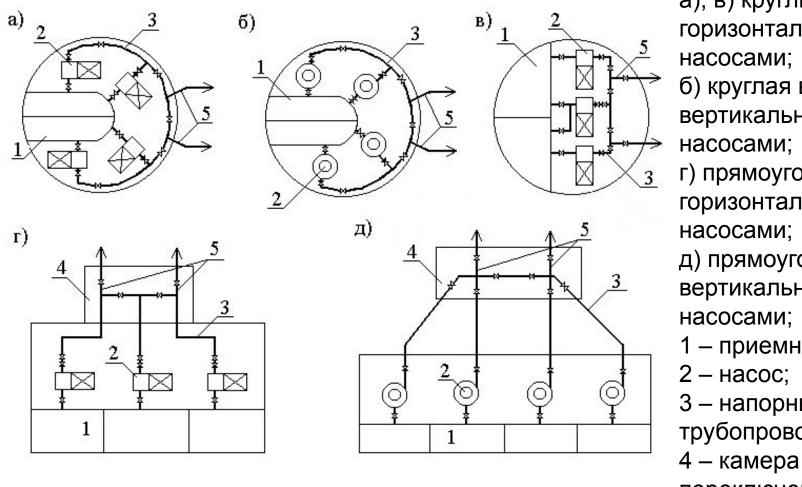
Принципиальные схемы насосных станций 2-го подъема и промежуточных станций подкачки

1 - водоводы первого подъема; 2 - сооружения для очистки воды; 3 -резервуар; 4 - всасывающие трубопроводы; 5 - насосная станция второго подъема; 6 - водоводы; 7 - насосная станция первого подъема; 8 - подводящий канал; 9 - станция подкачки; 10 - водовыпуск; 11 - отводящий канал


Принципиальные схемы канализационных насосных станций

- 1 насосная станция; 2 приемный резервуар; 3 самотечные коллекторы;
- 4 напорный трубопровод; 5 очистные сооружения; 6 приемный колодец

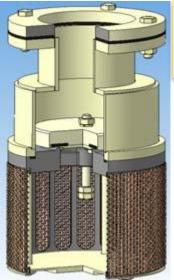
Компоновку насосов, трубопроводов и оборудования в любой насосной станции следует осуществлять таким образом, чтобы обеспечивалась надежность работы станции, удобство, простота и безопасность обслуживания агрегатов и узлов коммуникаций трубопроводов. Следует также предусматривать возможность расширения станции с наименьшими затратами средств.


Схемы компоновок насосных агрегатов в зданиях насосных станций

В насосных станциях применяются следующие схемы расположения агрегатов:

- а) однорядное, параллельно продольной оси здания;
- б) однорядное, перпендикулярно продольной оси здания;
- в) однорядное расположение агрегатов под углом к продольной оси станции;
- г) двухрядное;
- д) двухрядное, но в шахматном порядке;

Схемы размещения насосного оборудования, трубопроводов и арматуры в совмещенных насосных станциях:


- а), в) круглые в плане с горизонтальными
- б) круглая в плане с вертикальными
- г) прямоугольная с горизонтальными
- д) прямоугольная с вертикальными
- 1 приемная камера;
- 3 напорный трубопровод;
- переключений;
- 5 напорный водовод.

Для обеспечения безопасности обслуживания и удобства монтажа и демонтажа агрегатов последние должны иметь свободный доступ со всех сторон:

- Между выступающими частями насосных агрегатов нужно оставлять проход шириной не менее 1 м при низковольтных (до 1000 В) электродвигателях и 1,2 м при высоковольтных (более 1000 В).
- Расстояние между агрегатами и стеной должно быть не менее 0,7 м при их расположении в шахматном порядке и равно 1 м при их расположении по другим описанным выше схемам.
- Между фундаментами агрегатов и распределительным щитом следует соблюдать дистанцию 1,5 м, а между неподвижными выступающими частями прочего оборудования не менее 0,7 м. В насосных станциях, как правило, внутри здания, устраивают площадки для монтажа и ремонта агрегатов (монтажные площадки).
- Вспомогательное оборудование (дренажные насосы, вакуум-насосы и т. п.) располагают таким образом, чтобы не увеличивать размеры здания, т. е. на свободных местах машинного зала.

Трубопроводная арматура насосных установок и станций

- Приемная арматура:
- □ приемный клапан;
- □ приемная сетка;
- □ Воронка.
- Запорная арматура:
- □ задвижка;
- □ поворотный затвор.
- Кроме перечисленной основной арматуры, насосы комплектуют мелкой арматурой:
- □ спускные вентили и краны,
- пробные краны,
- штуцеры для присоединения манометра и вакуумметра,
- другая арматура с малым условным проходом.

Клапан приемный с тарельчатым затвором, сетчатым фильтром.

Задвижка 30с41нж Ду-200

Затвор поворотный

Контрольно-измерительные приборы и устройства насосных станций

Для обеспечения нормальной работы НС необходимо контролировать следующие технологические параметры: □расход подаваемой жидкости (*расходомеры*), □давление на напорных коллекторах (или водоводах) и на каждом насосе (**манометры, вакуумметры**), □уровни в приемных резервуарах (*уровнемеры*), □вакуум во всасывающих линиях и вакуум-котле, □температуру подшипников (у крупных насосов). Кроме этих приборов, на насосных станциях применяют электроизмерительные приборы: амперметры, вольтметры, ваттметры, фазометры, счетчики электроэнергии.

- Расходомеры крыльчатые, турбинные, расходомеры переменного перепада, сопла Вентури, электромагнитные (индукционные) (лучше применять для сточных вод);
- Уровнемеры поплавковые, уровнемерыдифманометры, пневмометрические

Семкостные и контак

Sitrans FX300 - Расходомер вихревой

манометры

Грузоподъемное оборудование насосных станций

- <u>Ручные тали</u> (с кошками и без них) применяют для подъема грузов на высоту 3-12 м, их грузоподъемность от 0,5 до 12 т, тяговое усилие 250-750 H, (25-75 кгс), электротали грузоподъемностью от 0,25 до 10 т,
- Электротельферы,
- **Мостовые кран-балки** с ручным приводом грузоподъемностью от 0,5 до 5 т; электрические кран-балки с пролетом до 16 м изготовляют грузоподъемностью 1-5 т.
- **Мостовые краны** однобалочные краны изготовляют грузоподъемностью 3,2-8 т с пролетом от 4,5 до 12 м; электрические мостовые краны изготовляют грузоподъемностью от 5 до 50 т с пролетом от 11 до 31,5 м.
- <u>Круговые мостовые краны</u> применяются на крупных насосных станциях, размещенных в зданиях кругового сечения в плане.

