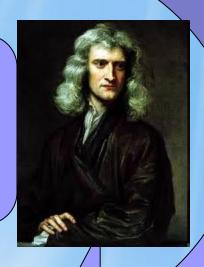


ОПТИКА

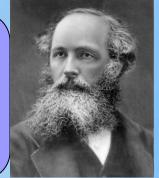


Теории света

XVII Bek

Корпускулярная теория света Исаак Ньютон Свет – поток частиц, идущих от источника во все стороны

(перенос вещества)


Волновая теория света

Гюйгенс
Свет — волны,
распространяющиеся в особой,
гипотетической среде — эфире,
заполняющем все пространство и
проникающее внутрь всех тел

Теории света

XIX век

Дж. Максвелл доказал, что свет есть частный случай электромагнитных волн

Генрих Герц экспериментально обнаружил электромагнитные волны

XX век

При излучении и поглощении свет ведет себя подобно потоку частиц. Были обнаружены прерывистые (квантовые) свойства света

Свет – это излучение, но лишь та его часть, которая воспринимается глазом, поэтому свет называют видимым излучением.

Тела, от которых исходит свет, являются источниками света

Естественные источники

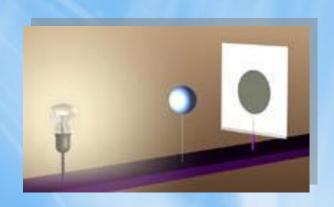
Искусственные источники



Тепловые источники излучают видимый свет при нагреве выше 800°C

Источники света

Геометрическая оптика


изучает законы распространения световой энергии в прозрачных средах на основе представления о световом луче

Линия, вдоль которой распространяется световая энергия, называется <u>световым лучом.</u>

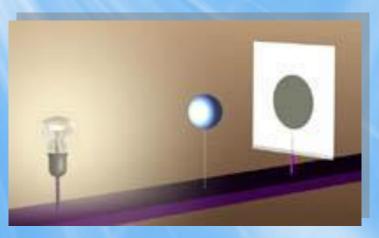
Точечный источник света — это светящееся тело, размеры которого намного меньше расстояния, на котором мы оцениваем его действие.

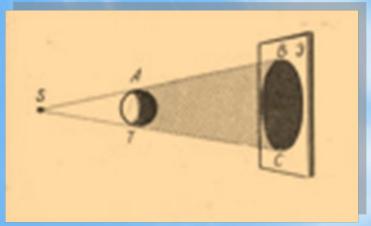
Свет распространяется по всем направлениям, но если между глазом и источником поместить непрозрачный предмет, то источник света мы не увидим. Объясните почему.

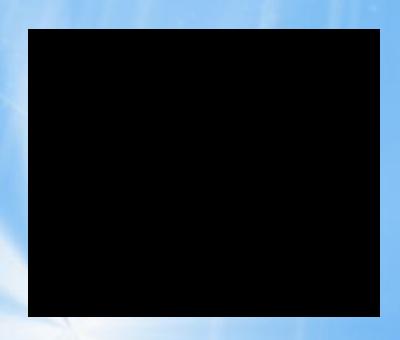
Объясняется это тем, что свет в прозрачной однородной среде распространяется прямолинейно.

Это закон прямолинейного распространения света.

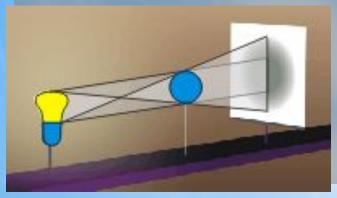
Маяки


Впервые закон прямолинейного распространения света был сформулирован в III в. до н.э. древнегреческим ученым Евклидом. Он является автором первых дошедших до нас сочинений по оптике — разделу физики, изучающему световые явления.



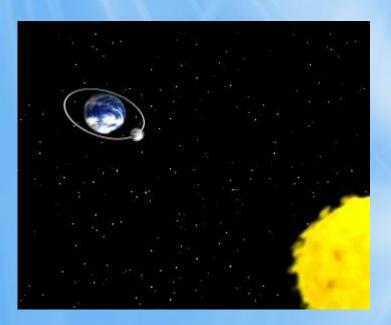

Солнечные часы

Тень — это та область пространства, в которую не попадает свет от источника.



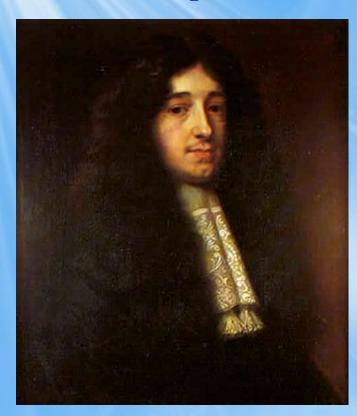


Полутень – эта та область, в которую попадает свет от части источника.



Солнечные и лунные затмения

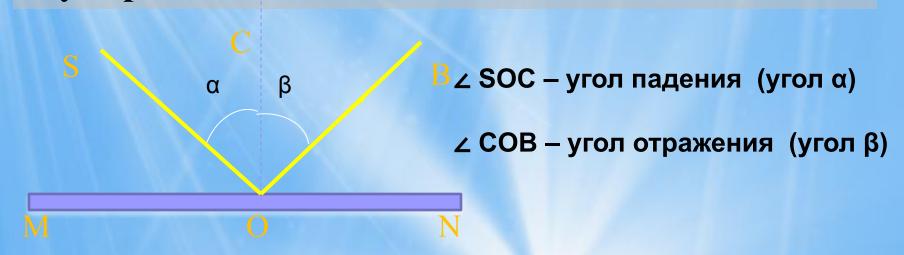
Затмение солнечное – тень от Луны падает на Землю.



Затмение лунное – Луна попадает в тень, отбрасываемую Землёй.

Отражение света

Принцип Гюйгенса



Христиан Гюйгенс (1629-1695)

Каждая точка среды, до которой дошло возмущение, сама становится источником вторичных волн.

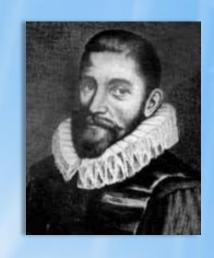
Угол падения — угол между падающим лучом и перпендикуляром к границе раздела двух сред в точке падения.

Угол отражения — угол между отражённым лучом и перпендикуляром к границе раздела двух сред.

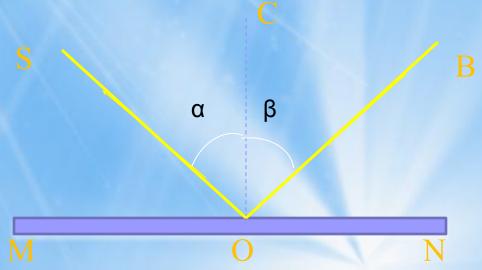
Линия MN – поверхность раздела двух сред. Луч SO – падающий луч . Луч OB – отраженный луч .

Законы отражения света

- Падающий и отраженный лучи, а также перпендикуляр к границе раздела двух сред, восстановленный в точке падения луча, лежат в одной плоскости (плоскость падения).
- Угол отражения β равен углу падения α.


$$(\angle \alpha = \angle \beta)$$

Кто установил законы отражения света?


Голландец Виллеброрд Снель ван Ройен (1580-1626), именовавший себя Снеллиусом, наблюдал, как тонкий луч света отражается в зеркале. Он просто измерил угол падения и угол отражения луча (чего до него не делал никто) и установил закон: угол падения равен углу отражения.

Обратимость световых лучей

Если луч падает на зеркало в направлении ВО, то отражённый луч пойдёт в направлении ОЅ. Падающий и отражённый луч могут меняться местами. Это свойство лучей называется обратимостью световых лучей.

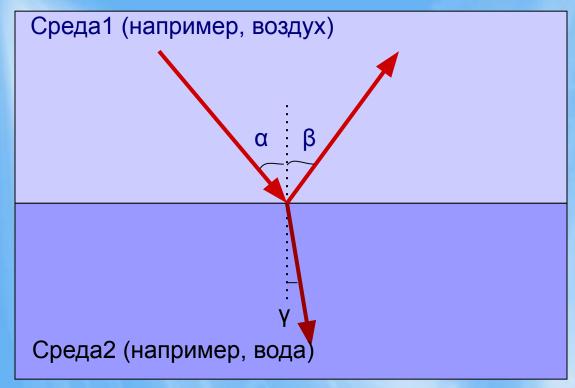
Отражение и рассеяние света

Отражение света от некоторой поверхности, разделяющей пространство на две части, означает изменение направления переноса энергии света таким образом, что свет продолжает распространяться в первоначальной среде.

Если пучок параллельных лучей падает на неровную поверхность или мелкие частицы, то направление лучей меняется случайным образом, и тогда говорят о

рассеянии света.

Зеркальное отражение –


отражение параллельных падающих лучей от плоской поверхности, при котором все отражённые лучи параллельны.

Диффузное отражение –

отражение параллельных падающих лучей от плоской поверхности, при котором все отражённые лучи не

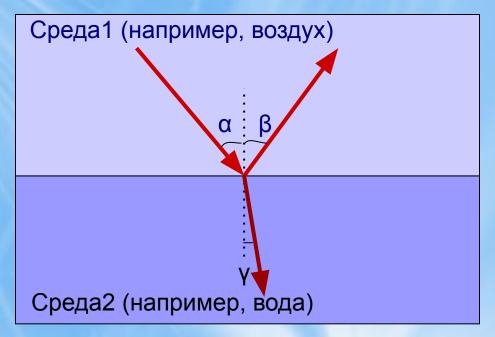
остаются параллельными.

Преломление света

α – угол паденияβ – угол отраженияγ – угол преломления

Угол падения равен углу отражения

Угол отражения может быть больше или меньше угла падения (в зависимости от сред)


Законы преломления:

- 1. Преломленный луч лежит в одной плоскости с падающим лучом и перпендикуляром к границе раздела двух сред, восстановленным в точке падения луча.
- 2. Отношение синуса угла падения к синусу угла преломления есть величина постоянная для двух данных сред:

n – относительный показатель преломления двух данных сред

(показатель преломления второй среды относительно

первой)

Физический смысл относительного показателя преломления: он показывает

во сколько раз скорость света в той среде, из которой луч выходит, больше скорости света в той среде, в которую он входит.

Если луч падает в среду из вакуума, *п* называется *абсолютным показателем* преломления (или просто показателем преломления) данной среды.

$$n_{воздуха} \approx 1; n_{воды} \approx 1,33$$

Абсолютный показатель преломления равен отношению скорости света в вакууме к скорости света в данной среде.

Ту среду, у которой показатель преломления больше, называют оптически более плотной.