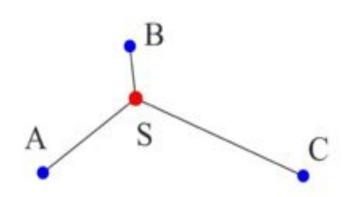
NP-полнота и сложность Задачи Штейнера

Нечаева Инна 7381

Задача Штейнера. Формулировка

На плоскости задано п точек. Тпебуется соединить эти точки, исп рего веро точки Штейнера, таким о точка была соединена с ка всех проведённых линий бы



sle

Достаточные условия

- В решение могут входить промежуточные точки, и все соединения должны быть отрезками, соединяющими точки (исходные и промежуточные).
- В каждой промежуточной точке должны сходиться три отрезка
- В исходных точках должны сходиться не более трёх отрезков.
- Угол между отрезками, сходящимися в одной точке не должен быть меньше 120 градусов

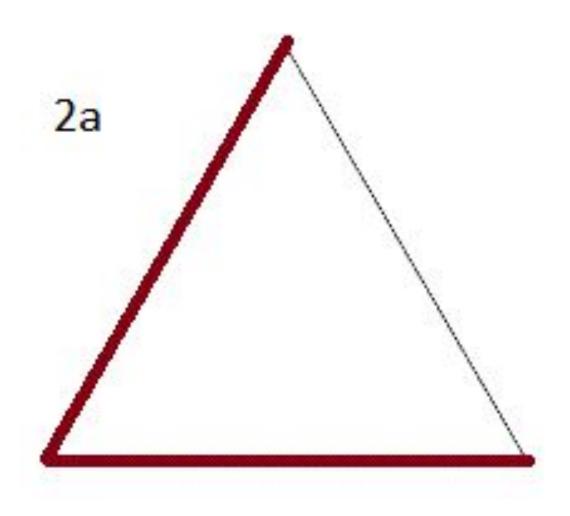
Типы задач Штейнера.

- Евклидова задача Штейнера
- Линейная задача Штейнера
- Задача Штейнера на графах.

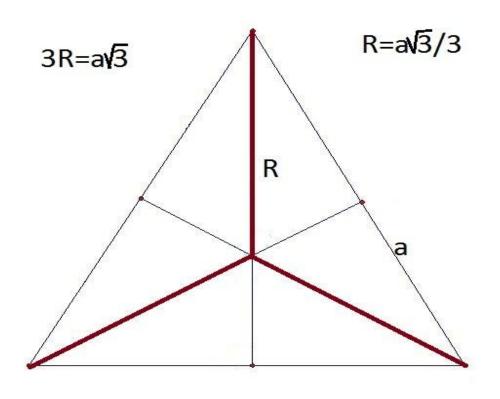
Гипотеза Гильберта-Поллака

Пусть на плоскости задано произвольное множество из n точек. Обозначим L_м длину минимального остовного дерева, которое стягивает эти точки, и L_s – длину минимального дерева Штейнера. Для любого конечного множества $\sqrt{3}_2 \le \frac{L_s}{L_M} \le 1.$ ОСТИ

Вычисление МОД

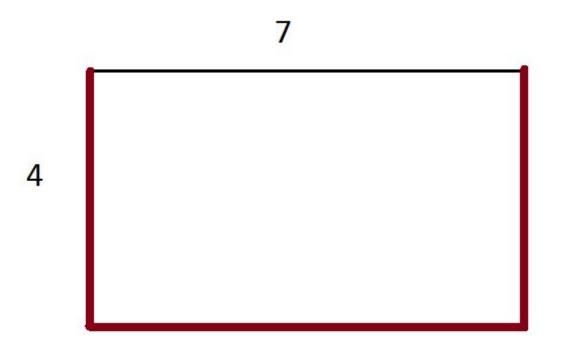


Вычисление минимального дерева Штейнера



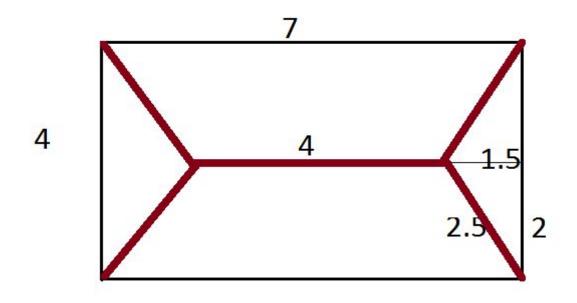
 $Ls/Lm = a\sqrt{3}/2a = \sqrt{3}/2$

Вычисление МОД



Lm=4+7+4=15

Вычисление минимального дерева Штейнера



Ls=4+4*2.5=14

LS/LM=14/15=U.93 U.8/<U.93<1

NP-полные задачи

Задача выполнимости булевых формул

- Бинарное целочисленное программирование
- Задача о клике
 - Задача "упаковки" множества
 - Задача о вершинном покрытии
 - Задача о покрытии множества
 - Feedback Vertex Set
 - Feedback Arc Set
 - Задача ориентированного Гамильтонова
 - Задача неориентированного Гамильтонова
- Задача выполнимости булевых формул с тремя литералами
 - Задача раскраски графа
 - Задача о покрытии клики
 - Задача о точном покрытии
 - Задача о вершинном покрытии в гиперграфах
 - Задача дерева Штайнера
 - 3-dimensional matching
 - Задача о ранце
 - Job sequencing
 - Partition problem)
 - Задача о максимальном разрезе

Задача Штайнера NР-полная

Грэм, М. Гэри, Джонсон:

Теорема: задача Штейнера на графах является NP-полной.

Доказательство:

- 1. показать, что Р принадлежит классу NP;
- 2. Выбрать известную NP-полную задачу из P`;
- 3. Построить преобразование f из P`в P;
- 4. доказать, что f-полиномиальное преобразования.

Пункт 1. Задача Штайнера принадлежит классу NP

- Предположим $\langle G, R, k \rangle \in ST$, например $\langle G, R, k \rangle$ принадлежит классу NP.
- В этом случае, существует такое решеі $T \subseteq G$, и мы можем проверить за полиномиальное время, что:
- Т действительно дерево: оно не содержит циклов и оно связно;
- дерева T касается всех терминалов указанного множества R;
- число ребер, которые включает дерево не более k.

Пункт 2. Задача точного покрытия трёхэлементными множествами

Дано:

- конечного множества X с |X| = 3q;
- Множество C состоящее из 3-элементных подмножеств $X, C = \{C_1, \cdots, C_n\}, C_i \subseteq X, |C_i| = 3 \quad 1 \le i \le n;$

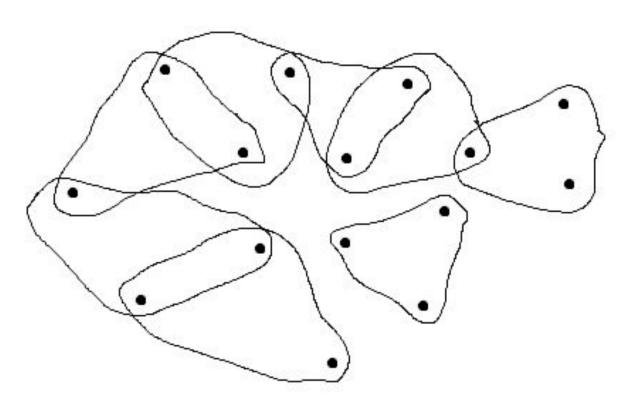
Вопрос:

Существует ли $\langle X,C \rangle \in \mathrm{X3C}$ мейство С С`, которое соответствуе:

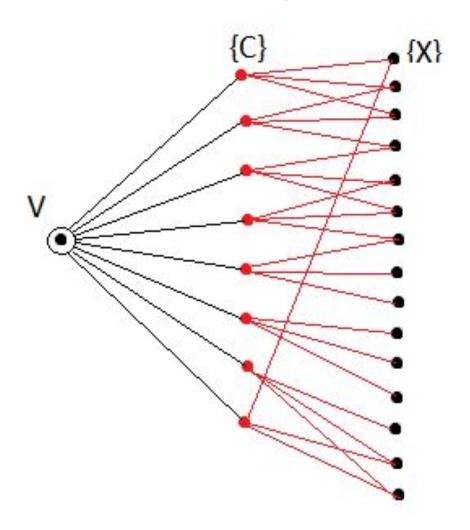
- чпены решения С` образуют разбиение множества Х;
- |C'| = q.

Приведём пример точного покрытия трёхэлементными множествами, которое определяется мн $X = \{x_1, \cdots, x_{3q}\}$ и группой трёхэлементных множ $C = \{C_1, \cdots, C_n\}$ Необходимо построить ST такое, что множество терминалов графа G = (V, E) будет равно R и длина остовного дерева не будет превосходить k.

|X|=15



|C|=8

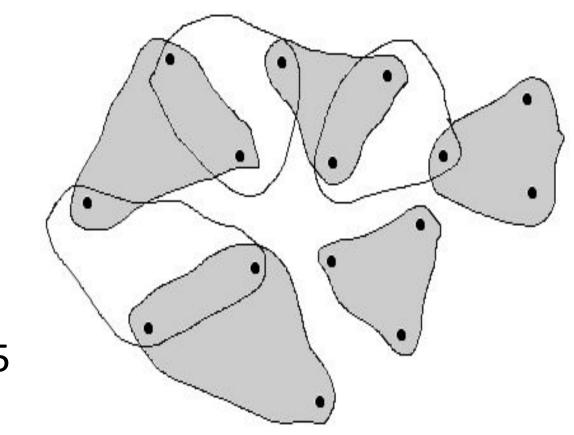


Условия для дерева Штайнера:

- Т действительно дерево: оно не содержит циклов и оно связно;
- дерево T касается всех терминалов указанного множества R;
- число ребер, которые включает дерево не более k.

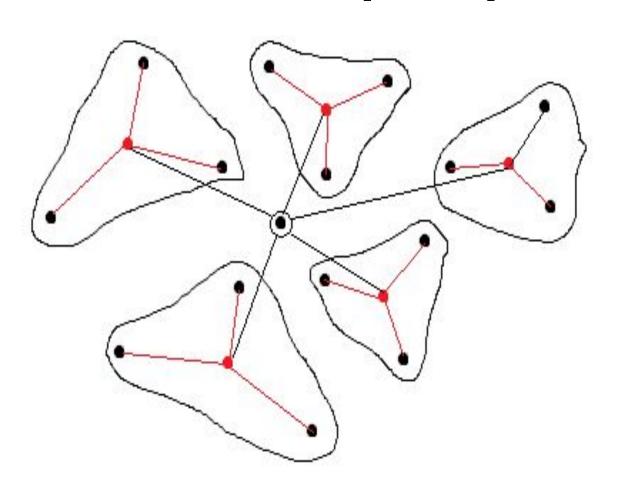
Установим К равное 4q, где q - количество трёхэлементных подмножеств задачи X3C.

Пункт 3.Решение задачи Х3С

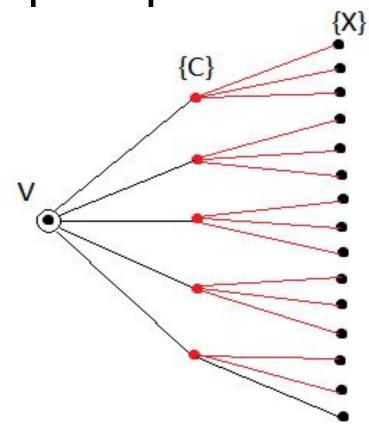


|X|=15 q=5

Пункт 3.Определение множества рёбер



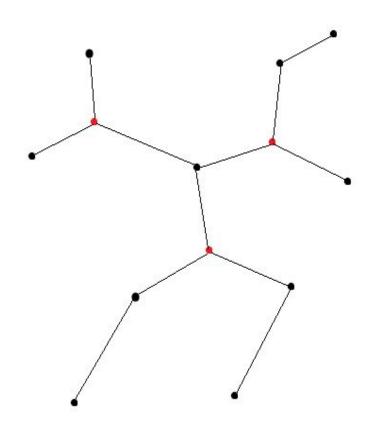
Пункт 3.Определение множества рёбер



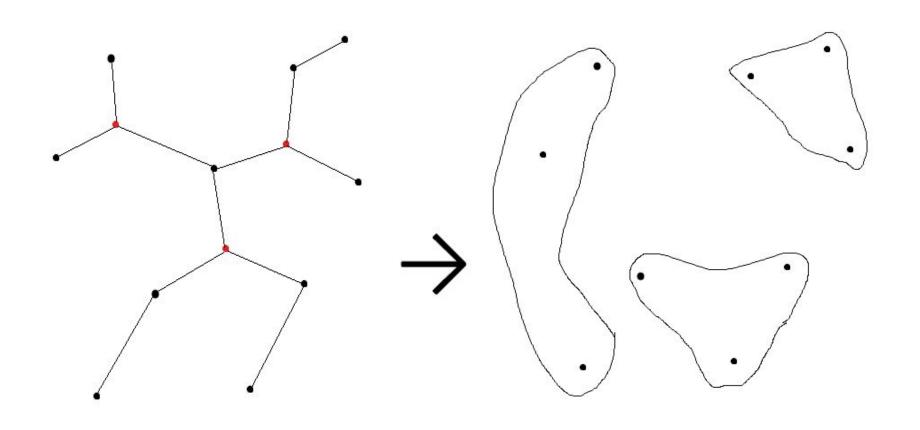
K=4q=4*5=20 K=5*3+5=20

Обратное преобразование из ST в X3C

К≤4q V ≤4q+1 По опр. ДШ, Т содер> С-узлов -> Но если V охватят все 3q х-узло V=4q+1 К=4q



Обратное преобразование из ST в X3C



Алгоритм аппроксимации Robins, Zelikovsky (2000 г.)

Обозначения:

Дан граф G = (V, E;cost), **STP** - любое дерево из G : **G**_s представляет собой полный граф с множеством вершин S.

Пусть **MST** (G_{ς}) минимальное остовное дерево G_{ς} .

Для любого графа H, **cost(H)** является суммой весов всех ребер в H.

Обозначаем Стоимость минимального остовного дерева H как **mst(H)**.

Дерево Штейнера на подмножество S`, в котором все терминалы листья называется Полной $H \cup T$ энентой.

T – дерево, соединяющие каждую вершину Штейнера с терминалом. $gain_T(H) = cost(T) - cost(T[H])$

Пусть T(H) граф минимальной стоимости в , который содержит H и покрывает все терминалы. Прирост H по отношению к T определяется

loss(K) является стоимостью подключения точек Штейнера из К к терминалам

Loss-Contracting Algorithm (k-LCA)

Loss-Contracting Algorithm (k-LCA)

ВХОД: полный граф G = (V;E; cost) с весом рёбер, удовлетворяющих неравенству треугольника, набором термина $\hat{S} \subset V$ и цеј $k \leq |\hat{S}|$

ВЫХОД: k-ограниченное дерево Штайнера графа G, включающее все терминалы из S

```
T = MST(G_s)
H = G_s
Repeat forever

Поиск k-ограниченной полной компоненты K с максимальным r = gain_T(K)/loss(K)

If r \le 0 then exit repeat

H = H \cup K
T = MST(T \cup C[K])
Output дерево MST(H)
```

Время работы Loss-Contracting алгоритма в квази-двудольных графах.

Loss-Contracting алгоритм может быть реализован за общее время работы O (n²m),

где m и n - количество терминалов и нетерминалов соответственно

Коэффициент Аппроксимации.

Теорема: для любого экземпляра ST, стоимость аппроксимации ST производится с помощью алгоритма

$$Approx \leq loss_k \cdot \ln \left(1 + \frac{mst - opt_k}{loss_k} \right) + opt_k$$

Approx $\approx 1 + \ln 3/2 < 1.55$