

Электроэнергии произведенной на Южно-Украинской АЭС достаточно для обеспечения нормальных условий жизнедеятельности региона с 5-миллионным населением. С 1982 года Южно-Украинским энергокомплексом произведено

история использования тье компании «westinghouse»

Эксплуатация ТВС компании «Westinghouse» началась в 2005 году на энергоблоке №3 ЮУАЭС в рамках исполнения Проекта квалификации ядерного топлива для Украины. После окончания опытной эксплуатации первых 6-и «пилотных» ТВС на протяжении 4-х топливных кампаний, в 2010 году выполнена загрузка партии из 42 ТВС-W на энергоблоке №3 ЮУАЭС, а в 2011 году на энергоблоке №2 ЮУАЭС. Планировалось также начать опытную эксплуатацию ТВС-W на энергоблоке №5 ЗАЭС начиная с 2012 года.

Во время перегрузки топлива в ППР-2012 были выявлены механические повреждения дистанционирующих TBC-W. решеток эксплуатировались в активных зонах энергоблоков №2 и №3 ЮУАЭС, при TBC-W остались герметичными. Расширение опытной **3A3C** энергоблоки №2 ЮУАЭС Nº5 эксплуатации на приостановлено. Комиссией при участии представителей ГП НАЭК «Энергоатом», компании «Westinghouse», ЦПАЗ и ГИЯРУ выявлено, что коренной причиной повреждения дистанционирующих решеток являются конструктивные недоработки ТВС-W.

На протяжении 2012-2014 годов компанией «Westinghouse» выполнен комплекс работ по доработке конструкции топливной сборки.

В августе 2014 года были выполнены приемочные испытания ТВС-WR усовершенствованной конструкции на заводе компании «Westinghouse» (Швеция) при участии представителя ГИЯРУ.

ТВС-WR первой опытной партии прошли входной контроль и были загружены в активную зону энергоблока №3 ЮУАЭС без замечаний во время ППР-2014.

Краткое описание усовершенствованной конструкции TBC-WR

В общем, конструкция усовершенствованной ТВС-WR аналогична конструкции ТВС-W. Модификации коснулись следующих узлов кассеты:

- Дистанционирующие решетки:
- о Модифицированы лепестки обода ДР для увеличения их жесткости и увеличено их количество (выполнены через каждый твэл);
- о Изменен профиль обода, увеличена толщина обода и его ширина в углах, добавлена отбортовка по длине обода;
- о Материал средних ДР заменен на инконель (Alloy 718);
- Добавлены 8 отсутствующих внутренних полос в средних ДР и верхней решетке;
- о Размер «под ключ» уменьшен на 0,25 мм.
- Головка:
- о Сглажены острые кромки на угловых ребрах;
- о На верхней поверхности опорной плиты добавлены 6 направляющих пластин по периметру плиты для исключения зацепления с хвостовиком соседней ТВС при загрузке в активную зону.
- Хвостовик:
- о Добавлены конусные скосы при переходе шестигранника в цилиндрическую часть на всех 6 гранях;
- о На ребрах и кромках выполнены фаски.

Влияние использования ТВС-WR на безопасность

Поставщиком топлива на заводе «Westinghouse» после модернизации выполнен ряд механических и гидравлических испытаний, а именно:

- Гидравлические испытания кассеты и ее элементов в полном объеме;
- Статические испытания решетки на разрушение;
- Динамические испытания решетки на разрушение;
- Вибрационные тесты кассеты;
- Механические испытания ТВС-WR на поперечную жесткость;
- Испытания на сцепляемость контактирующих поверхностей ТВС;
- Имитация ТТО по загрузке/выгрузке активной зоны.

ТВС-WR усовершенствованной конструкции имеет ряд преимуществ относительно предыдущей модификации кассеты производства компании «Westinghouse», которые обеспечат возможность проведения транспортнотехнологических операций с ядерным топливом и эксплуатацию его в «смешанной» активной зоне без повреждения.

Стенд инспекции и ремонта (СИР)

Назначение

СИР предназначен для проведения инспекции и ремонта топливных сборок ВВЭР-1000 компании Вестингауз. Конструкция СИР, измерительные системы и вспомогательное оборудование обеспечивает выполнение следующих операций:

- визуальный осмотр поверхности ТВС по всей ее длине;
- визуальный осмотр поверхности периферийных твэл и ободов ДР;
- измерение зазора между концевыми заглушками твэл периферийных рядов и опорными плитами головки и хвостовика ТВС;
- измерение межтвэльного зазора для периферийных рядов твэл ТВС;
- измерение длины ТВС и отдельного твэла;
- измерение величины изгиба и скручивания ТВС;
- измерение размера «под ключ» дистанционирующих решеток;
- измерение усилия затирания ПС СУЗ в НК ТВС;
- измерение толщины оксидного слоя на оболочке твэл;
- профилометрические измерения поверхности оболочки твэла;
- визуальный осмотр и дефектоскопия твэла;
- потвэльный контроль герметичности оболочек;
- извлечение негерметичных (поврежденных) твэл/твэг из ТВС и установка на их место вытесняющих вставок (имитаторов твэл).

Состав и описание СИР • рабочего стенда инспекции топлива (РСИТ); • рабочей платформы (РП); • установки трехосного контроля «ХҮХ», • Рабочего стенда инспекции топлива; • Рабочей платформы; Направляющей для ТВС;

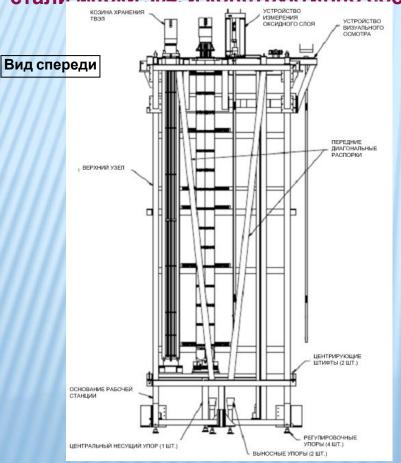
- СИР конструктивно состоит из трех основных частей:

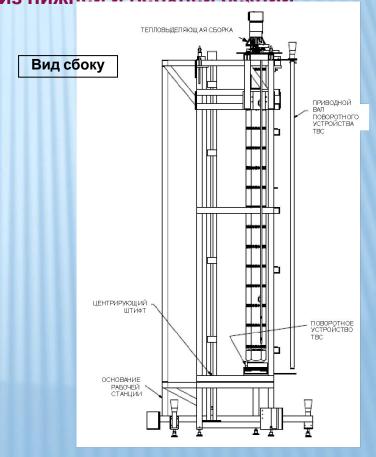
а также тринадцати измерительных стендов (систем) и ремонтного оборудования для извлечения негерметичных (поврежденных) твэл/твэг из ТВС и установки на их место вытесняющих вставок (имитаторов твэл).

Инспекция топлива осуществляется с использованием:

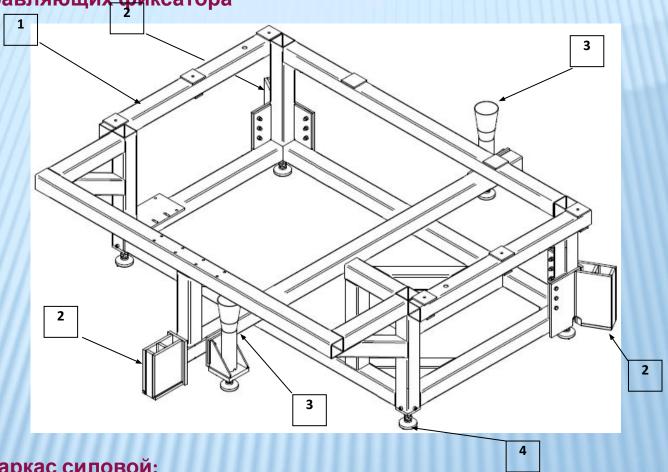
- Поворотного инструмента рабочей станции;
- Системы трехосного перемещения «XYZ» (координатное устройство);
- Оборудования для визуальной инспекции ТВС;
- Оборудования для измерения длины ТВС;
- Оборудования для измерения усилия затирания ПС СУЗ в НК ТВС;
- Оборудования для измерения толщины оксидных пленок;
- Оборудования для измерения размера «под ключ» ДР;
- Оборудования для профилометрических измерений поверхности оболочки твэла;
- Оборудования для визуальной инспекции и вихретоковой диагностики твэла:
- Оборудования ультразвуковой дефектоскопии твэлов;
- Подвески для рабочего инструмента.

Ремонтные работы на СИР, связанные с заменой поврежденных твэл/твэг в ТВС, производятся с использованием следующего оборудование для ремонта:

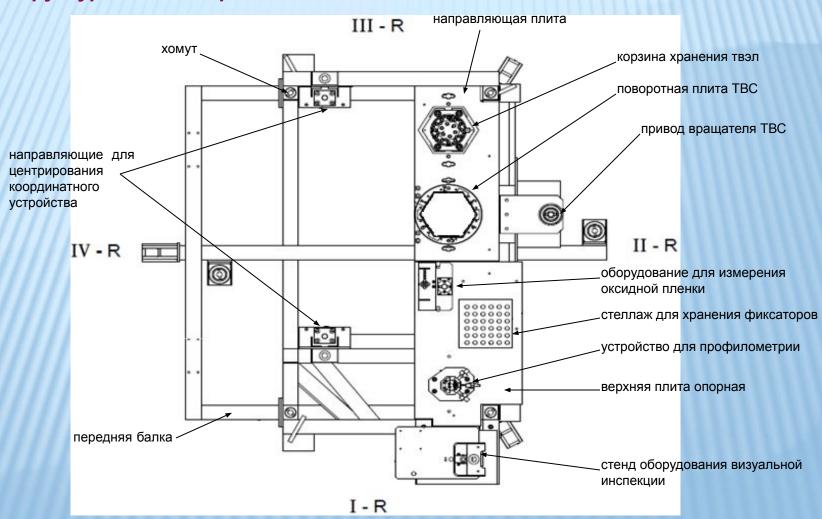

- Направляющей насадки для ТВС;
- Устройства для демонтажа головки ТВС;
- Стеллажа для хранения фиксаторов;
- Оборудования для обращения с твэл;
- Направляющей плиты для твэл;
- Пенала для хранения твэл.



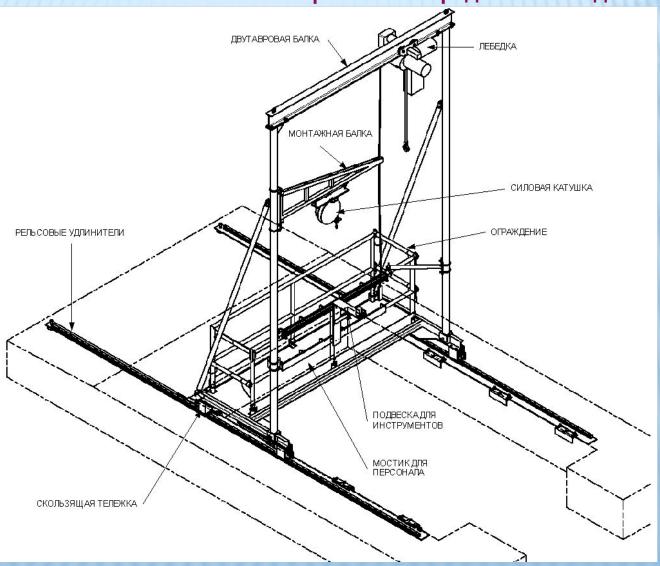
Рабочий стенд инспекции топлива (РСИТ)


Рабочий стенд инспекции топлива является одним из основных элементов СИР и служит опорой для инспектируемой ТВС и корзины хранения поврежденных твэлов/твэгов, а также для размещения оборудования систем инспекции и ремонта.

РСИТ представляет собой сварную конструкцию, силовой каркас которой выполнен, в основном, из коробчатых труб из нержавеющей стали марки 304, и конструктивно состоит из нижней и верхней секций


Нижняя секция служит опорой для верхней секции РСИТ и плиты, на которой размещается поворотный механизм для вращения ТВС. В нижней части секции располагаются шесть регулировочных упоров и три направляющих фиксатора

- 1- каркас силовой;
- 2- направляющий фиксатор (замок), 3 шт;
- 3- выносные упоры, 2 шт.;
- 4- регулируемые упоры, 4 шт.


Верхняя секция РСИТ представляет собой отдельную сварную конструкцию, которая при помощи направляющих штифтов присоединятся к нижней секции и закрепляется болтами. Верхняя часть секции представляет собой рабочую поверхность, на которой закреплены структурные и измерительные элементы Рабочей станции

Рабочая платформа (РП)

Рабочая платформа – это передвижная конструкция с подъемным механизмом, которая предназначена для доступа рабочего персонала к РСИТ с возможностью выполнения работ непосредственно над ней

Установка трехосного контроля «XYZ»

Установка трехосного контроля «ХҮZ» (или координатное устройство) является самостоятельным элементом СИР и предназначена для выполнения различных операций по инспекции ТВС и для размещения на нем соответствующего оборудования.

Стенд визуальной инспекции ТВС

Стенд визуальной инспекции предназначен для выполнения наружных проверок тепловыделяющих сборок, видеообзора и видеозаписи состояния элементов конструкции ТВС.

Система измерения длины ТВС

Система измерения длины ТВС предназначена для измерения изменения длины ТВС в процессе эксплуатации.

Система измерения изгиба и скручивания ТВС

Система измерения изгиба и скручивания ТВС предназначена для определения величины осевого прогиба ТВС и угла скручивания ТВС. Система измерения изгиба и скручивания ТВС включает: осистему визуальной инспекции (видеокамера D40); осистема трехосного перемещения «ХҮХ».

Система измерения усилия протяжки ПС СУЗ

Система измерения усилия протяжки ПС СУЗ является самостоятельным элементом СИР и предназначена для измерения величины усилия затирания ПС СУЗ в направляющих каналах инспектируемой ТВС. Оборудование для измерения усилия затирания ПС СУЗ в НК ТВС включает:

оПС СУЗ;

оподъемное устройство с захватным инструментом для ПС СУЗ; окалиброванный тензодатчик; ооткалиброванная система измерения нагрузки в диапазоне 0-255 кг; опост контроля и электронный регистратор данных.

Система измерения размера «под ключ» дистанционирующих решеток ТВС

Система ультразвуковой диагностики габаритов дистанционирующей решетки является одним из элементом инспекции СИР и предназначена для измерения размеров «под ключ» шестигранной ДР облученной ТВС 1- шестигранный

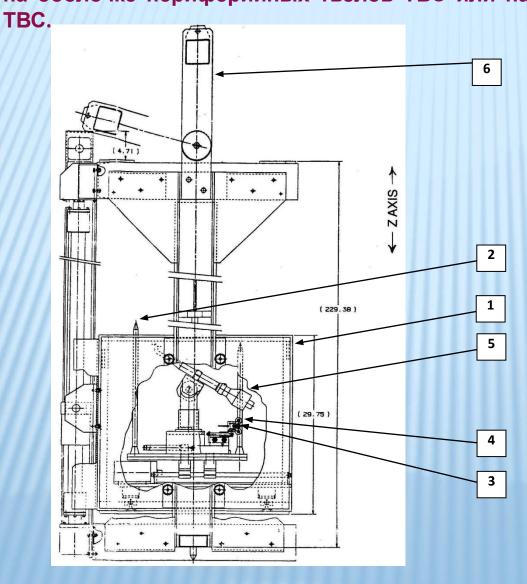
BB3P

пневматический хомут;

- 2- основание;
- 3- ультразвуковой датчик;
- 4- пневматический зажимной цилиндр;
- 5- пневматический задний упор;
- 6- шланги для сжатого воздуха;
- 7- фиксирующий штифт;
- 8- направляющий штифт;
- 9- хомут.

Система измерения толщины окисной пленки

Система измерения толщины оксида является самостоятельным элементом СИР и предназначена для измерения толщины окисной пленки на оболочке периферийных твэлов ТВС или на твэлах, извлеченных из 1- каретка координатного

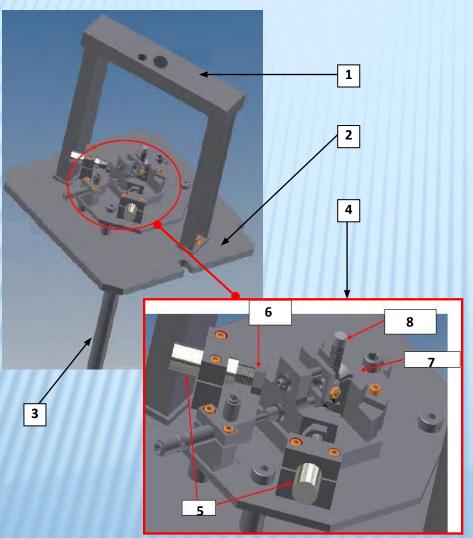

устройства «XYZ»;

2- установочные штифты;

3- вихретоковый зонд, расположенный на измерительной головке;

4- направляющие ролики;

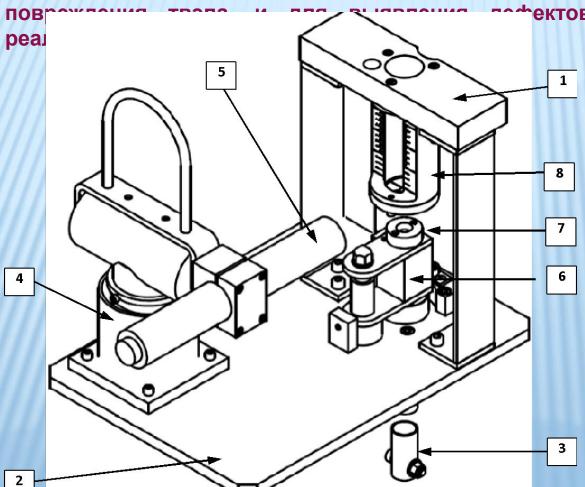
5- видеокамера Diakont D40; 6- подъемная серьга (перекладина)



Система профилометрии поверхности оболочки твэла

Система профилометрии является самостоятельным элементом СИР и предназначена для измерения диаметра оболочки облученного твэла по

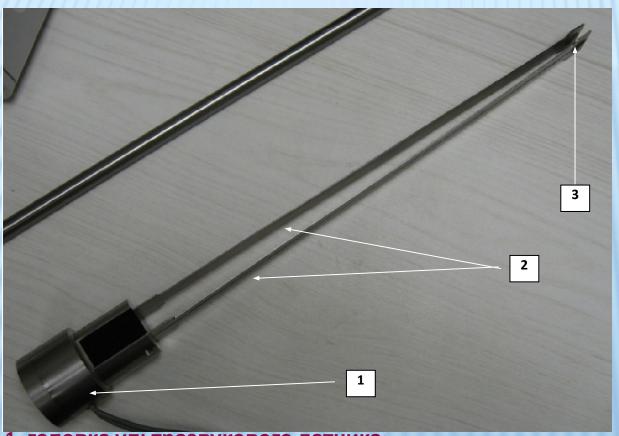
всей его высоте.



- 1- стойка (профилометрическая консоль);
- 2- плита опорная;
- 3- труба-пенал;
- 4- профилометрическая головка;
- 5- LVDT-датчики;
- 6- стопорная гайка;
- 7- направляющий блок;
- 8- эталонный образец.

Система визуальной инспекции и вихретоковой диагностики твэла

Система визуальной инспекции и вихретоковой диагностики (дефектоскопии) твэла является самостоятельным элементом СИР и предназначена для анализа состояния поверхности оболочки и сварочных узлов концевых заглушек твэла, с целью идентификации характера повреждения трада и предназнания пофектов 1-обожительна;


- 2- плита опорная;
- 3- труба-пенал;
- 4- опорный стакан видеокамеры;
- 5- видеокамера (D-40);
- 6- головка для вихретоковых измерений;
- 7- измерительная катушка;
- 8- направляющий цилиндр с разметкой

Система автоматической инспекции топлива (AFIS)

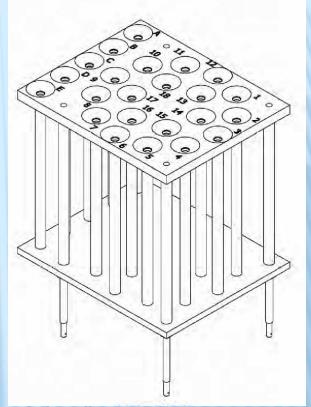
проведения быстрой ультразвуковой дефектоскопии топлива, локализации и определения негерметичного твэла(ов) в ТВС, которая выявлена как

негерметичная по результатам инспекции в пенале КГО.

- 1- головка ультразвукового датчика;
- пластинчатый держатель пьезоэлектрического зонда;
- 3- пьезоэлектрический зонд.

Комплект инструмента для ремонта ТВС

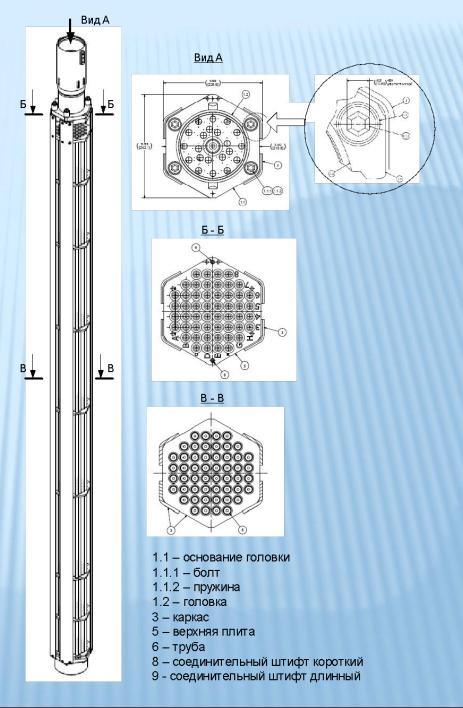
Комплект инструмента предназначен для демонтажа головки ТВС с целью извлечения твэл из ТВС для пострадиационной инспекции твэл или ремонта ТВС посредством замены негерметичных твэл на имитаторы и последующей установки головки ТВС.


В комплект инструмента для ремонта облученной ТВС СИР входит следующий инструмент:

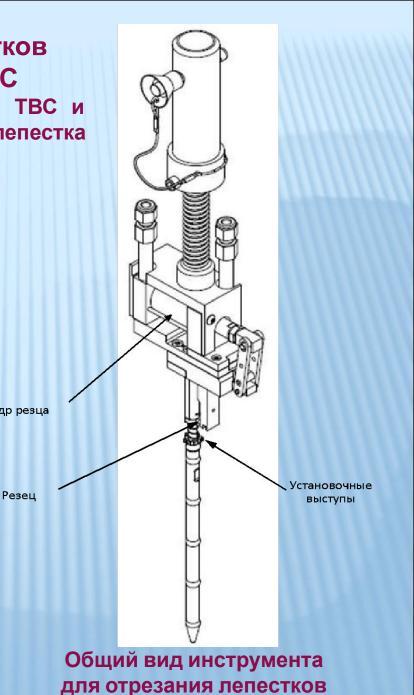
- •Инструмент для демонтажа и установки съемной головки ТВС;
- •Инструмент для демонтажа и установки стопорных труб;
- •Корзина для хранения стопорных труб;
- •Инструмент для обращения с твэлом;
- •Корзина для хранения твэл;
- •Кронштейн для крепления и хранения длинномерного инструмента;
- •Отрезной инструмент лепестков втулок НК;
- •Манипулятор головки ТВС;
- •Система видеоконтроля.

Общий вид инструмента для демонтажа и установки стопорных труб

Общий вид корзины для хранения стопорных труб

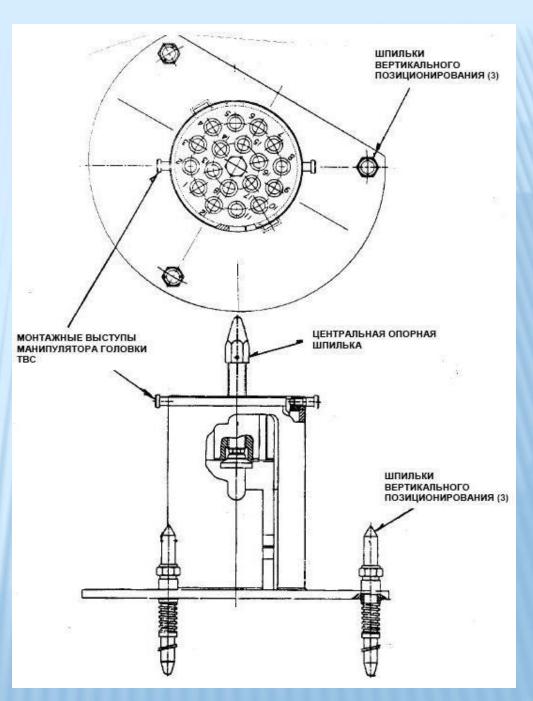


Общий вид цанги инструмента для обращения с твэлом



Корзина для хранения облученных твэл

B корзине ДЛЯ хранения облученных твэл хранятся твэлы, извлеченные из облученной ТВС операции после демонтажа головки ТВС. В корзине твэлы могут храниться, как временно, во проведения время пострадиационных инспекций, так и постоянно. Постоянно хранятся поврежденные твэлы.



ВТУЛОК

Манипулятор головки ТВС

Манипулятор предназначен для демонтажа и установки головки ТВС ВВЭР-1000 производства компании "Вестингауз" и используется для удержания и перемещения головки ТВС после демонтажа стопорных труб.

По состоянию на данный момент СИРТ в ППР-2013

- Выполнены работы по сборке, монтажу в БВ энергоблока №3 СИРТ.
- Выполнены предварительные комплексные испытания оборудования в объеме инспекционной части.
- Выполнена инспекция 8 ТВС-W. Отчет о проведении инспекции ТВС-W направлен в Госатомрегулирования.
- Выполнен демонтаж СИРТ из БВ по окончании инспекции ТВС-W.
- Произведена разборка СИРТ и дезактивация оборудования.
- Выполнена упаковка оборудования в транспортные контейнеры и установлена на место хранения

Проблемные вопросы

целью ввода в эксплуатацию ремонтной части СИРТ, оборудование которого уже поставлено на ЮУАЭС, необходимо выполнение коррекции технических документов и, возможно, внесения изменений в конструкцию ремонтной части в соответствии с результатами экспертизы специалистов ГНТЦ ГИЯРУ.

1. В процессе конструирования и изготовления СИРТ не было учтено требование пункта 4.2.9. Приложения 4 контракта SMS11-564:

«...конструкция стенда должна исключить возможность попадания конструкционных элементов ТВС (в том числе и при разрушении оболочки ТВЭЛ, подверженных внутреннему гидрированию вследствие разгерметизации, разрыва ТВЭЛа в любой его части и высыпания топливных таблеток) в бассейн выдержки. Должно быть предусмотрено оборудование для сбора и извлечения посторонних предметов, которые могут образоваться при разборке ТВС...»

рекомендаций, основании изложенных отчете

государственной экспертизы ГНТЦ ЯРБУ № 13-09-7150 требуется:

Внести необходимые изменения в конструкцию СИРТ для обеспечения выполнения требований пункта 4.2.9. Приложения 4

контракта SMS11-564.

- На основании внесения изменений в конструкцию СИРТ, со специалистами ЦПАЗ, Вестингауз совместно откорректированную редакцию ТС, согласовать ее в ЦПАЗ, компании «Вестингауз» и направить на ЮУАЭС для рассмотрения и согласования в НАЭК «Энергоатом».
 - Доработать документацию на СИРТ.
- 2. Доработать ОАБ в части проведения анализа надежности конструкции СИРТ (относящейся к 1 категории сейсмостойкости) при воздействии от МПЗ. Приведенный в сейсмическом редакции ОАБ расчет с учетом 5% затухания специалисты ГНТЦ ЯРБ

- 3. Доработать ОАБ в части обоснования безопасности работ при обращении с радиоактивными отходами, могущими возникнуть при проведении ремонта ТВС-W (включая фрагменты ТВЭЛ), а также при хранении в БВ негерметичных ТВЭЛ в корзине хранения, которая не исключает их контакта с водой БВ.
- 4. Дополнить ОАБ анализом напряжений, которые возникают в оболочке ТВЭЛ и в сварном соединении «оболочка твэла-верхняя заглушка» при извлечении ТВЭЛ из ТВС-W, в сравнении этих напряжений с допустимыми значениями.
- 5. Дополнить ОАБ анализом безопасности последствий, возникающих в результате ошибочных действий персонала при эксплуатации, проведении опробований и техническом обслуживании СИРТ
- 6. Подготовка и проведение обучения персонала ЮУАЭС работе на СИРТ, как того требует контракт SMC-11-564

На телеконференции между ГП «НАЭК «Энергоатом», ЮУАЭС, ЦПАЗ, и

«Вестингауз» были заявлены сроки:

- направления на ЮУАЭС программы проведения обучения – конец апреля – начало мая 2014;

- проведение базового обучения сборке-разборке оборудования и презентации функциональных возможностей в конце мая- начале июня 2014 года.
- 7. Определить дальнейшие подходы по применению СИРТ как на ЮУАЭС так и в Украине

В частности требуют конкретизации следующие вопросы:

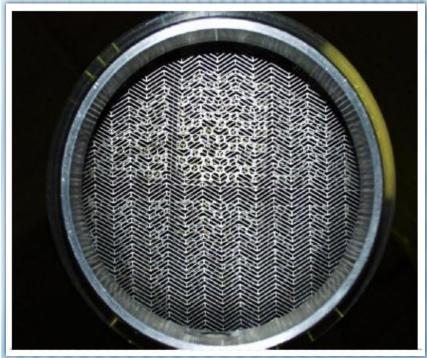
- Определение критериев целесообразности применения СИРТ.
- Определение персонала, выполняющего работы на СИРТ.

- Места хранения СИРТ на ЮУАЭС.

- Процедуры транспортировки СИРТ на другие АЭС (при необходимости).

ТВСА (ТВС альтернативной конструкции)

- **Жесткий скелет (каркас)**;
- Центральное отверстие ТТ = 1.4 (1.5) мм;
- ДР и НК из циркониевого сплава;
- Выгорающий поглотитель Gd₂O₃;
- Выгорание (среднее по ТВС) до 55 МВт/кгU;
- Выгорание ТВЭЛ до 59.1 МВт/кгU;
- Антидебрисный фильтр (опционально).



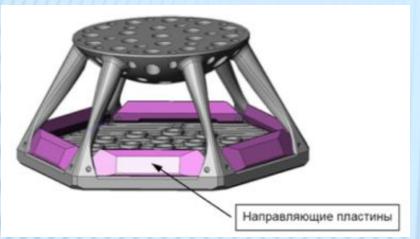
Антидебрисный фильтр (АДФ)

Все ТВСА поставок с 2013 г. комплектуются АДФ. АДФ улавливает частицы размером более 2 мм.

TBC-W

- Разработана как аналог ТВС-М
- ДР: 13 циркониевых и 3 стальных
- Бланкеты из природного урана
- Топливные таблетки без центрального отверстия
- Выгорание (среднее по ТВС) до 45 МВт⋅сут/кг∪
- Выгорание ТВЭЛ/ТВЭГ 62 МВт⋅сут/кг∪

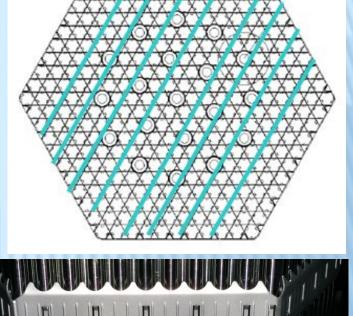
ПОВРШЕННОЕ СИЛОЗВЦИЛЕСКОЕ СОДРОТИВДЕЛИЕ

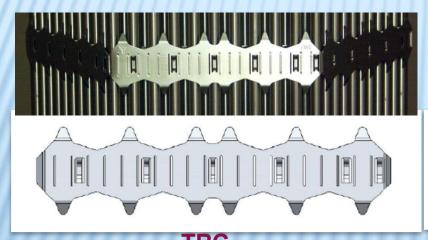

Конструктивные особенности TBC-WR

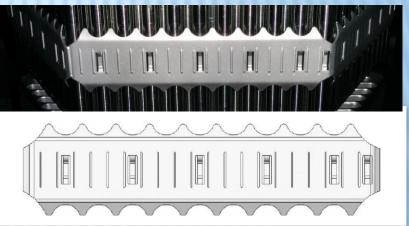
- TBC-WR (Robust) модифицированная конструкция TBC-W (упрочненная)
- НК, ЦТ, ТВЭЛ и ТВЭГ без изменений (материал оболочки сплав ZIRLOTM)
- Модифицированы:
 - о головка
 - о ДР
 - хвостовик

Головка

- Добавлены 6 направляющих пластин (для исключения зацепления с хвостовиком соседней ТВС при загрузке в а.з.)
- Сглажены острые кромки на угловых ребрах





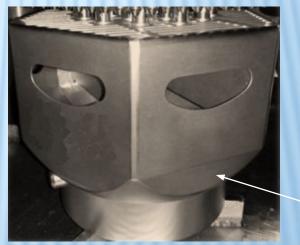


Дистанционирующие решетки

- Модифицированы лепестки обода ДР и увеличено их количество
- Изменен профиль обода
- Материал ДР заменен на сплав из нержавеющей стали (Alloy 718)
- Добавлены 8 внутренних полос

TBC-W TBC-W

R


Хвостовик

- Добавлены конусные скосы на всех 6 гранях
- На ребрах и кромках выполнены фаски

TBC-W

Конусный скос

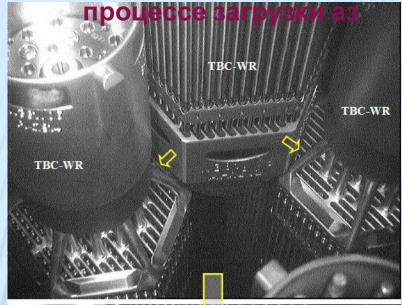
TBC-W R

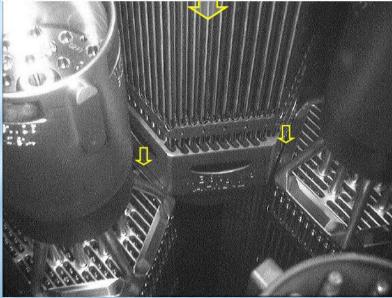
Конструктивные особенности TBC-WR

	TBCA	TBC-W	TBC-WR		
Топливо ТВЭЛ (ТВЭГ)	UO2 (UO2+Gd2O3)				
Масса топливной сборки, кг	713	755 760			
Масса топлива (двуокиси урана), кг	494.5±4.5	550.4±5	550.4±5		
Высота топливного столба, мм		3530			
Диаметр центрального отверстия TT, мм	1.4 (1.5)	1.4 (1.5) нет			
Длина бланкета, мм	нет	2 зоны по 152.4			
Обогащение бланкета по урану-235, %	0.714				
Длина ТВС, мм	4570	4583			
Размер ТВС "под ключ", мм	235.1 234				
Количество ДР в сборке	16 сплав Э110 (Zr+1%Nb)	16 (13 - Zr+1%Nb, 3 - сплав 718)	16 (сплав 718)		
ΚΓC (Re=500 000)	11.5+0.3 (ТВСА+АДФ)	14.6	16.19		
Максимальное выгорание, МВт·сут/кг∪ • ТВС • ТВЭЛ	55 59.1	45 (гарант.) 62 (ТВЭГ- 62)			

Особенности проведения транспортно технологических

Вид TTO	Максимальная скорость перемещения			
Вид 110	TBCA	TBC-w/wr		
	4.0			
	(окружение ТВСА	0.9		
	или	(без окружения)		
Перемещение ТВС в а.з. реактора, м/мин	без окружения)			
	0.3	0.3		
	(окружение	(окружение ТВСА		
	TBC-W/WR)	или TBC-W/WR)		
Перемещение ТВС в ячейках СУХТ, ТК-13, м/мин	6.0	0.9		
Перемещение ТВС в пенале КГО, ГП, ЧСТ,				
ячейке неуплотненного хранения топлива, м/мин	3.0	0.6		


Предельное изменение веса в результате трения о соседние кассеты при перестановках в реакторе и в результате трения об элементы технологического оборудования при перестановках в стеллаже БВ, чехле ТК-13, пенале КГО, пенале герметичном и чехле СЯТ, кгс


TBC-WR	TBC-W	TBCA
225	150	300

Взаимодействие хвостовика ТВС-WR с направляющими пластинами опорных плит головок соседних ТВС в

Состав активной зоны энергоблока №2 ЮУАЭС в 29-ю – 32-ю топливные кампании

Топливная кампания	ТВСА с АДФ	TBC-WR
29	121	42
30	79	84
31	37	126
32	-	163

Расход теплоносителя через реактор, м3/ч

	Номинально	Отклоненно
	е значение	е значение
29-я топливная загрузка (121 ТВСА с АДФ + 42 ТВС-WR)	91860	87970
30-я топливная загрузка (79 ТВСА с АДФ + 84 ТВС-WR)	91330	87450
31-я топливная загрузка (37 ТВСА с АДФ + 126 ТВС-WR)	90720	86850
32-я топливная загрузка (163 TBC-WR)	90110	83530

Максимальная температура топлива и оболочки твэла и твэга

Номер топливной загрузки	29-я	30-я	31-я	32-я
Температура наружной/внутренней поверхности оболочки твэла, °C	350/402	350/404	350/406	350/406
Температура наружной/внутренней поверхности оболочки твэга, °C	349/394	349/395	349/397	349/397
Температура в центре топливной таблетки твэла/твэга, °C	1788/1676	1828/1715	1883/1767	1893/1776
Максимальная линейная тепловая нагрузка на твэл/твэг, Вт/см	424/364	436/375	453/390	456/392

Коэффициент неравномерности			
распределения энерговыделения по	твэлам,		
не более			
Для ТВСА во всех топливных	1,500		
загрузках	_,		
Для TBC-WR в 29-й топливной	1,447		
загрузке			
Для TBC-WR в 30-й топливной	1,488		
загрузке			
Для TBC-WR в 31-й топливной загрузке	1,544		
Для TBC-WR в 32-й топливной	1,554		
загрузке			

КГС в приведенном виде при Re=500000 для ТВСА и ТВС-WR

Наименование параметра	TBCA	ТВСА с АДФ	TBC-WR		
КГС частей ТВС					
Вход в ТВС (хвостовик + необогреваемая часть твэлов)	0,71	1,01	1,03		
Активная часть ТВС (обогреваемая часть твэлов + 13 решеток)	8,58	8,58	12,67		
Выход из ТВС (головка + 2 решетки + необогреваемая часть твэлов)	2,58	2,58	2,49		
ТВС в целом	11,87	12,17	16,19		
КГС компон	ентов ТВС				
ДР	0,31	0,31	0,61		
Количество ДР	15	15	15		
Нижняя ДР	-	-	0,63		
Хвостовик	0,67	0,98	0,32		
Головка	1,65	1,65	0,90		
Пучок стержней	4,90	4,89	5,19		
ТВС в целом	11,87	12,17	16,19		
Коэффициент сопротивления трения пучка твэл	0,01374	0,1371	0,01516		
Проходное сечение ТВС	0,02538	0,02538	0,02537		
Доля протечек через направляющие каналы	0,010	0,010	0,016		

Ограничения по значениям подогрева теплоносителя на TBC-WR и TBCA на 29-ю – 32-ю топливные кампании

Параметр	29-я	30-я	31-я	32-я
Максимально допустимый подогрев теплоносителя в реакторе, °C	30.5	30.7	30.9	31.9
Максимально допустимый подогрев теплоносителя в петле, °C	32.6	32.9	32.9	33.8
Максимальный допустимый подогрев теплоносителя по показаниям CBPK с учетом погрешности измерения подогрева ±1.5, °C: - ТВС-WR с ПЭЛ - ТВС-WR без ПЭЛ - ТВСА с ПЭЛ - ТВСА без ПЭЛ	не более 44.6 44.1 38.0 37.0	не более 43.0 42.5 36.6 35.6	не более 41.4 40.8 35.1 34.2	не более 40.9 40.4 -
Максимальная допустимая температура теплоносителя на выходе из ТВС по показаниям СВРК учетом погрешности измерения температуры ±1, °C: - ТВС-WR с ПЭЛ - ТВС-WR без ПЭЛ - ТВСА с ПЭЛ - ТВСА без ПЭЛ	не более 333.1 332.6 326.5 325.5	не более 331.5 331.0 325.1 324.1	не более 329.9 329.3 323.6 322.7	не более 329.4 328.9 - -

Расчетные длительности кампаний без работы с использованием МЭР составляют:

- 29-я кампания: 266.9 эфф.сут.;
- 30-я кампания: 294.6 эфф.сут.;
- 31-я кампания: 283.6 эфф.сут.;
- 32-я кампания: 288.9 эфф.сут.;
- Стационарный цикл: 289.0 эфф.сут.

Сравнение НФХ проектных топливных загрузок с предельными значениями

	Параметр	наиху расче значе	тное	Критери й
		TBCA	TBC-WR	
	Минимальный запас по линейной тепловой нагрузке твэла, HPГ - 80%, Вт/см	25.1	47.6	> 0
	Минимальный запас по линейной тепловой нагрузке твэга, НРГ - 80%, Вт/см	93.0	117.3	> 0
1	Максимальная относительная мощность ТВС в а.з. (Kq)	1.315	1.328	≤1.350
	Максимальная относительная мощность твэла в а.з. (Kr)	1.461	1.457	≤1.500
	Максимальное по ТВС выгорание топлива, выгружаемого после завершения кампании, МВт*сут/тU	50811	46167	≤55000
	Коэффициент реактивности по температуре теплоносителя, 1/°C	-3.05*10-5		< 0
Ī	Коэффициент реактивности по плотности теплоносителя, 1/(г/см3)	1.75*10-2		>0
	Эффективность рабочей группы ОР СУЗ на номинальной мощности, %	0.76		≥0.69
	Эффективность АЗ (с учетом «застрявшего» ОР СУЗ) на номинальной мощности, %	6.70		≥5.50

