

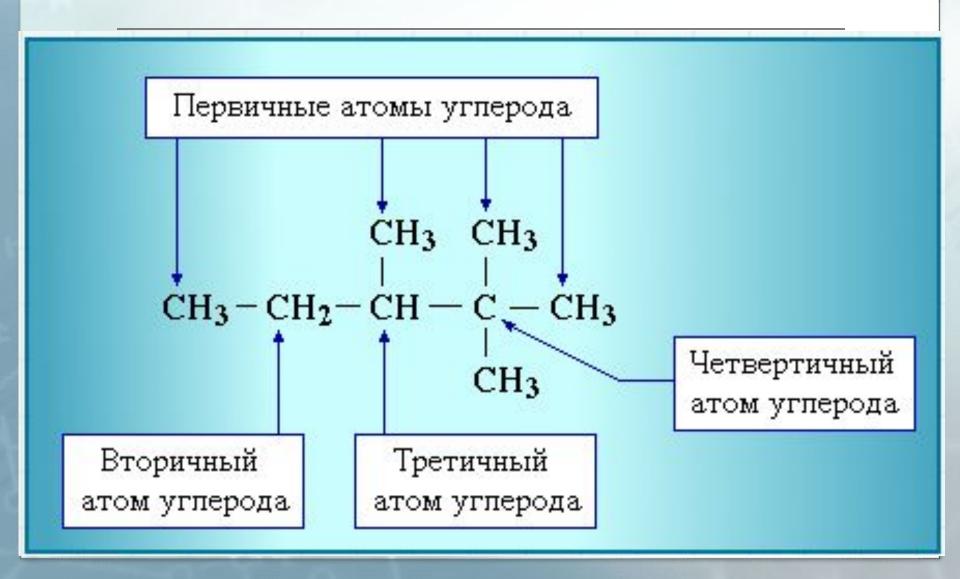
Классификация

Ациклические

Ациклические (алифатические) соединения

предельные

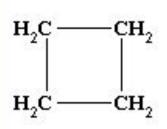
непредельные


$$CH_3$$
 $CH_2 = C - CH = CH_2$

HC≡CH

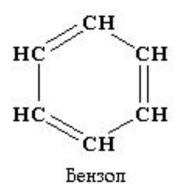
Изопрен

Ацетипен

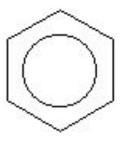

Число связей атома углерода

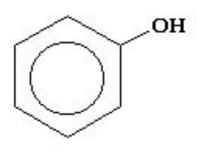
Циклические углеводороды

алициклические



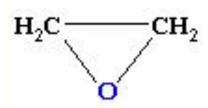
Циклобутан

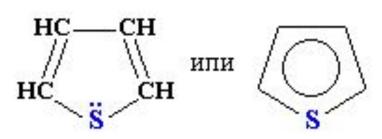

Циклогексан


Циклогексен

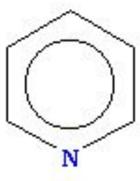
ароматические

ипи




Феноп

Циклические углеводороды


Гетероциклические соединения

Этипеноксид (эпоксид)

Тиофен

Пиридин

Классификация по функциональным группам

Классы органических соединений

Функциональ- ная группа	Название группы	Классы соединений	Общая формула	Пример		
-ОН	Гипроиссия	Спирты	R-OH	С₂Н₅ОН этиловый спирт		
	Гидроксип	Фенолы	K-OH	⊙∙он фенол		
)C=0	Карбонил	Альдегиды	R H>C=0	СН ₃ СНО уксусный альдегид		
	гарооныг	Кетоны	R > C = 0	CH ₃ COCH ₃ ацетон		
-C _N OH	Карбоксил	Карбоновые кислоты	R-C ^{≠0} OH	СН ₃ СООН уксусная кислота		
-NO ₂	- C 1 (C 1)		R-NO ₂	CH ₃ NO ₂ нитрометан		
-NH ₂	-NН2 Амино		R-NH ₂	№ N H ₂ анилин		
-F, -Cl, -Br, -I (Hal)	і рром иол		R-Hal	СН ₃ С1 хлористый метил		

Полифункциональные соединения

Моно функциональные соединения

CH₃CH₂OH

CH₃COOH

этанол (этиловый спирт)

уксусная кислота

Полифункциональные соединения

HO-CH, CH, OH

HO-CH₂-CH-CH₂-OH OH

этиленгликоль

глицерин

Гетерофункциональные соединения

C1-CH2-COOH

H₂N-CH-COOH CH₃

хлоруксусная кислота аминокислота аланин

9.2017

Гомологические ряды

Алканы: $\mathbf{CH_4}$ метан

СН-СН, этан

CH₃CH₂CH₃ пропан

CH₃CH₅CH₅CH₃ бутан

CH₃CH₂CH₂CH₂CH₃ nehman

Cпирты: CH_3^-OH метанол

СН-СН-ОН этанол

CH₂CH₂CH₂OH пропанол

CH₃ CH₂ CH₂ CH₂OH бутанол

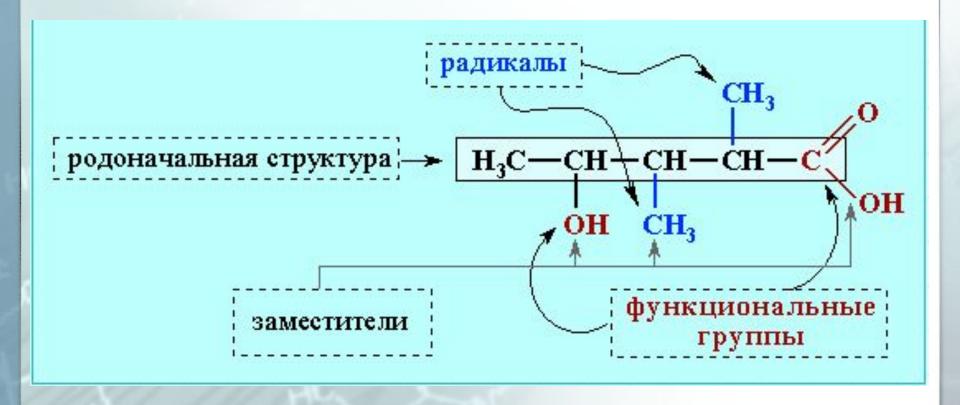
гомологическая разность: -CH₂-

Номенклатура соединений (по ИЮПАК (IUPAC)):

- -заместительная
- радикальнофункциональная

Термины

Для применения номенклатуры ИЮПАК необходимо знать смысл ряда номенклатурных терминов: родоначальная структура, функциональная группа, органический радикал, заместитель.


Родоначальная структура – химическая структура, составляющая основу называемого соединения. В ациклических соединениях это главная углеродная цепь, а в циклических – карбоцикл или гетероцикл.

Функциональная группа – атом или группа атомов, определяющая принадлежность соединения к определенному классу, связанная с родоначальной структурой или частично входящая в ее состав.

Органический радикал – остаток молекулы, из которой формально удалены один или два атома водорода, при этом остаются свободными одна или две валентности (остатки молекул с большим, чем 2 числом свободных валентностей как органические радикалы обычно не рассматриваются).

Заместитель — любой атом или группа атомов, замещающие атом водорода в родоначальной структуре. Заместителями являются как функциональные группы, так и радикалы.

Термины

Заместительная номенклатура

Префиксы	Название родо етрукт	Суффикс			
	корень суффикс				
Все заместители в едином алфавитном порядке (кроме старшей функциональной группы)	Главная цепь, основная циклическая или гетероциклическая структура	Степень насыщенности: -ан, -ен, -ин	Только старшая функциональ- ная группа		

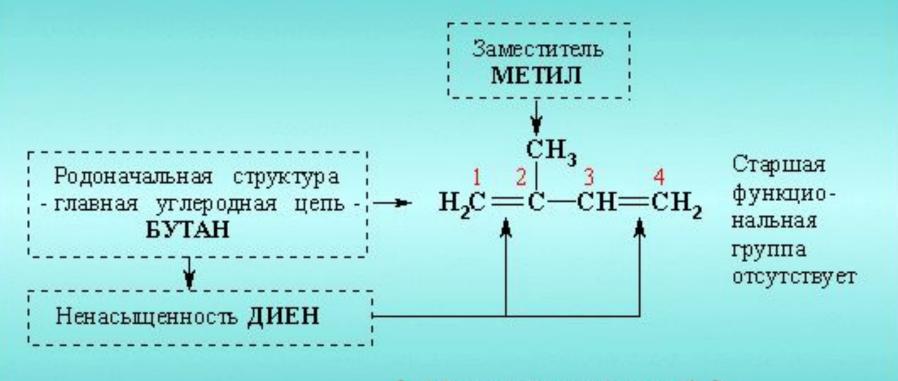
Префиксы

Функциональные группы, обозначаемые только префиксами

Класс соединений	Группа	Префикс		
Галогено- производные	-F, -Cl, -Br, -I	фторо, хлоро, бромо, иодо*		
Простые эфиры	-OR	алкокси		
Сульфиды	-SR	алкилтио		
Нитросоединения	-NO ₂	нитро		

^{*}В русской терминологии концевая буква "о" часто опускается.

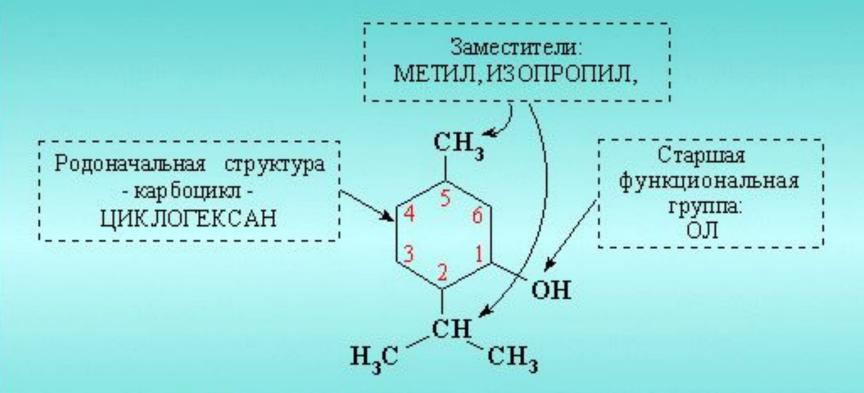
Порядок старшинства


Функциональные группы, обозначаемые только префиксами

Класс соединений	Группа	Префикс				
Галогено- производные	-F, -Cl, -Br, -I	фторо, хлоро, бромо, иодо*				
Простые эфиры	-OR	алкокси				
Сульфиды	Сульфиды -SR <i>алкилти</i>					
Нитросоединения	-NO ₂	нитро				

^{*} В русской терминологии концевая буква "о" часто опускается.

<u>Пример 1</u>. Изопрен $CH_2=C(CH_3)-CH=CH_2$


структурная единица натурального кау чука:

2-Метилбутадиен-1,3

Пример 2. Ментол - компонент препарата валидол

2-Изопропил-5-метилциклогексанол

17 08.09.2017

Радикально-функциональная номенклатура

Функциональная группа	Название класса						
-CN	Цианид						
>C=O	Кетон						
-NH ₂ , -NH-, >N-	Амин						
-OH	Спирт						
-SH	Гидросуль фид						
-O-OH	Гидропероксид						
-O-	Эфир или оксид						
-S-, >S=O	Сульфид, сульфоксид						
-F, -Cl, -Br, -I	Фторид, хлорид, бромид, иодид						

Структура названия соединения:

название радикала (радикалов) + название класса

Радикально-функциональная номенклатура

 C_2H_5 OH

Этиловый спирт $C_2H_5-O-C_2H_5$

Диэтиловый эфир $H_2C = CH - O - C_4H_9$

Винилбутиловый эфир

Метилфенилкетон

$$C_2H_5Br$$

Этил**бромид**

Диметиламин

- 1. Какая номенклатура использована в названии соединения C₂ H₅ Br этилбромид?
- заместительная номенклатура ИЮПАК
- 🛂 радикально-функциональная номенклатура ИЮПАК
- 💶 название тривиальное

- 2. Название *глицерин*, данное соединению CH₂ OH-CHOH-CH₂ OH, соответствует
- заместительной номенклатуре ИЮПАК
- 🛂 радикально-функциональной номенклатуре ИЮПАК
- 🔽 название тривиальное

3. Корневую часть в названии соединения

по систематической международной номенклатуре определяет структура, содержащая число углеродных атомов, равное

$$\begin{array}{c} {\rm CH_{3}} \\ {\rm CH_{3}\text{-}CH\text{-}CH_{2}\text{-}C\text{-}CH_{3}} \\ {\rm CH_{3}} & {\rm CH_{2}\text{-}CH_{3}} \end{array}$$

4. Укажите старшую функциональную группу и число углеродных атомов в родоначальной структуре соединения:

$$\begin{array}{c} \text{H}_2\text{N}-\text{CH}-\text{CH}_2\text{OH} \\ \mid \\ \text{C}_2\text{H}_5 \end{array}$$

- ☑ –ОН; З атома С
- ✓ –ОН; 4 атома С
- ✓ -NH₂; 2 атома С
- ✓ -NH₂; 4 атома С

$$\substack{\mathsf{H_2N-CH-CH_2OH}\\ \mathsf{C_2H_5}}$$

- 5. Какие названия соединения CH₃ CH₂ OH даны с нарушением правил ИЮПАК:
 - а) 1-гидроксиэтан,
 - б) гидроксиэтан,
 - в) этангидроксид,
 - г) этанол,
 - д) этанол-1,
 - е) этиловый спирт?

а, б, в а, б, д

а, б, в, д, е

а, в, д б, в, г, е

а, б, в, д

Основные типы химических связей

 $\Delta \chi = \chi_A - \chi_B$

 $oldsymbol{\chi}_{\mathbf{A}}$ и $oldsymbol{\chi}_{\mathbf{B}}$ – эпектроотрицательности атомов \mathbf{A} и \mathbf{B}

Основные типы химических связей

Ионная связь

 $\Delta \chi > 2$

Ковалентные связи

 $\Delta \chi < 2$

Полярная ковалентная связь

 $2 > \Delta \chi > 0.5$

Неполярная ковалентная связь

 $0.4 > \Delta \chi = 0$

Увеличение различий в эпектроотрицательности ($\Delta \chi$) связанных атомов

Ионная связь

химическая связь, основанная на электростатическом притяжении ионов

В органических соединениях встречается редко, нпример, в органических солях: RCOO-Na⁺

25 08.09.2017

Электроотрицательность

Способность атома удерживать внешние валентные электроны

Подчиняется периодическому закону: растет слева направо в периодах и снизу вверх в главных подгруппах в таблице Д.И. Менделеева

Ковалентная связь

Связь, образованная путём обобществления пары электронов связываемых атомов

H:H C:C

C: H

C:O

H - H

H₃ C-CH₃

 H_3C-H

H₃ C-OH

Свойства ковалентной связи

- Направленность
- Насыщаемость
- Полярность
- Поляризуемость

Направленность

Молекулярное строение органических молекул имеет геометрическую форму. Количественной мерой направленности является угол между двумя связями (валентный угол)

Насыщаемость

Способность атомов образовывать ограниченное число ковалентных связей. Количество связей определяется числом внешних атомных орбиталей атома.

Полярность

Обусловлена неравномерным распределением электронной плотности вследствии различной электроотрицательности атомов по шкале Л.Полинга:

Элемент	K	Na	Li	Mg	Н	S	C	I	Br	Cl	N	0	F
χ	0.8	0.9	1.0	1.2	2.1	2.5	2.5	2.5	2.8	3.0	3.0	3.5	4.0

Полярность

Ковалентные связи делятся на полярные и неполярные.

Неполярные связи между двумя одинаковыми атомами: Н—Н, С—С.

Полярность

Полярные связи между двумя атомами с разной электроотрицательностью: H-F, C-CI.

$$\delta + \delta - C - N$$

$$\frac{\delta - \delta +}{O - H}$$

Поляризуемость

Смещение электронов под воздействием внешнего электрического поля другой частицы.

$$C \rightarrow Cl$$

$$C \rightarrow N$$

Длина связи

Расстояние между центрами двух связанных атомов. На характеристики связей влияет их кратность

Энергия связи

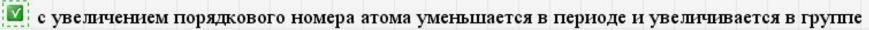
Энергия, выделяемая при образовании связи или необходимая для разъединения двух связанных атомов

Дипольный момент (µ или D)

Величина, характеризующая полярность связи:

$$|\overline{\mu}| = l \cdot q$$

I - длина связи q - эффективный заряд


Основные характеристики некоторых ковалентных связей

Связь	Тип гибридизации атома углерода	Энергия, кДж/моль	Длина, нм	Дипольный момент, D
С-С	sp ³	348	0,154	0
C=C	sp^2	620	0,133	0
C≡C	sp	814	0,120	0
C-H	sp ³	414	0,110	0,2
C-H	sp	435	0,107	1,1
C-O	sp^3	344	0,143	1,1
C=O	sp^2	708	0,121	2,40
C-C1	sp ³	331	0,176	2,05
C-Br	sp^3	277	0,194	2,04
C-N	sp³	293	0,147	0,4
О-Н		460	0,096	1,51
N-H	=	390	0,101	1,4

- 1. Что такое электроотрицательность атома?
- отрицательный заряд атома в молекуле
- 🔽 сродство к электрону
- 🗹 способность атома переходить в возбужденное состояние
- 🔟 способность атома удерживать валентные электроны и притягивать электроны других атомов
- 🛂 потенциал ионизации атома

Элемент	K	Na	Li	Mg	Н	S	C	I	Br	Cl	N	0	F
χ	0.8	0.9	1.0	1.2	2.1	2.5	2.5	2.5	2.8	3.0	3.0	3.5	4.0

2. Как изменяется электроотрицательность элементов в Периодической системе?

с увеличением порядкового номера атома увеличивается в периоде и уменьшается в группе

с увеличением порядкового номера атома увеличивается в периоде и в группе

не подчиняется Периодическому закону

Элемент	K	Na	Li	Mg	Н	S	C	I	Br	Cl	N	0	F
χ	0.8	0.9	1.0	1.2	2.1	2.5	2.5	2.5	2.8	3.0	3.0	3.5	4.0

40 08.09.2017

3. В каком порядке увеличивается электроотрицательность следующих элементов: C, N, P, Br ?

Элемент	K	Na	Li	Mg	Н	S	C	I	Br	Cl	N	0	F
χ	0.8	0.9	1.0	1.2	2.1	2.5	2.5	2.5	2.8	3.0	3.0	3.5	4.0

41 08.09.2017

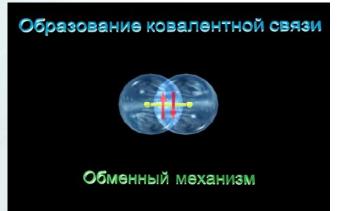
- 4. Укажите соединения, в которых имеются:
 - а) только ковалентные связи;
 - б) ковалентные и ионные.
 - **A.** $CH_3 Cl$ **B.** $CH_3 NH_2$
 - **B.** MgF_2 **Γ.** CH_3 ONa
 - 🛂 а) соединения А, Г;
- б) соединение Б
- 🗹 а) соединения А, Б, В, Г; б) нет
- а) соединения А, Б;
- 🛛 а) соединения А, Б;

- б) соединения В, Г
- б) соединение Г

5. Укажите тип связей в молекуле:

Связь	— ионная
Связь	 ковалентная слабополярная
Связь	 ковалентная полярная
Связь	 ковалентная неполярная

Механизмы образования связи


- Связь между атомами возникает при перекрывании их атомных орбиталей с образованием молекулярных орбиталей (МО).
- Различают два механизма образования ковалентной связи:
 - •обменный;
 - -донорно-акцепторный

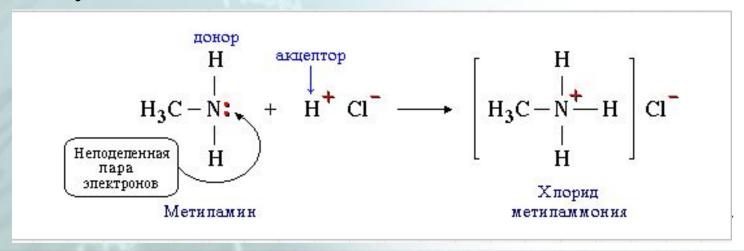
ОБМЕННЫЙ МЕХАНИЗМ

в образовании связи участвуют одноэлектронные атомные орбитали, т.е. каждый из атомов предоставляет в общее пользование по одному электрону:

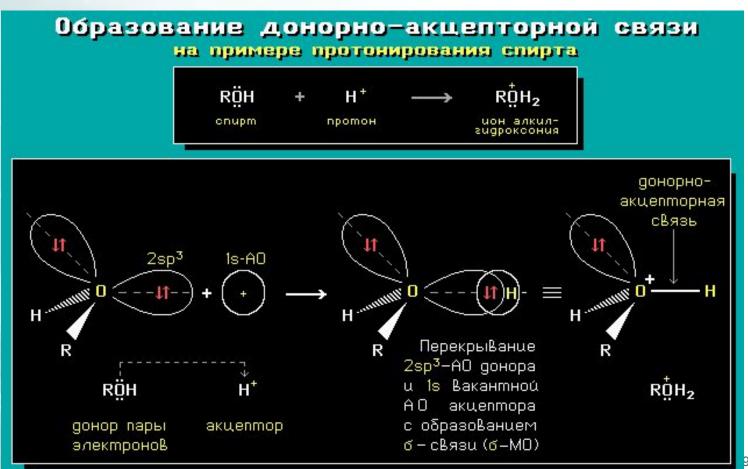
 $A \cdot + \cdot B \longrightarrow A \cdot B$

ДОНОРНО-АКЦЕПТОРНЫЙ

образование связи происходит за счет пары электронов атома-донора и вакантной орбитали атома-акцептора:


донор акцептор

 $A: + B \longrightarrow A:B$


Донорно-акцепторные связи

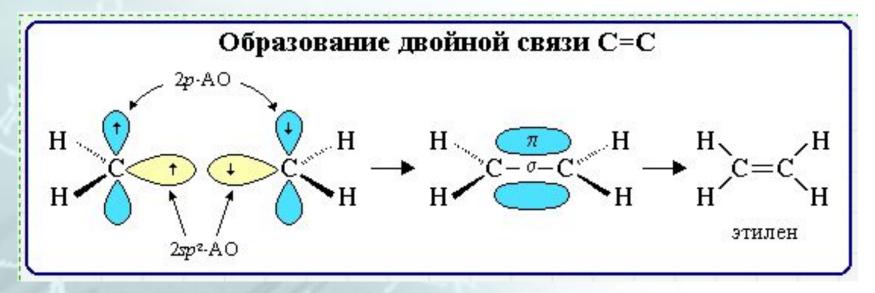
 Ковалентная связь, образующаяся за счет пары электронов одного из атомов, т.е. по донорно-акцепторному механизму, называется донорноакцепторной

 Донорно-акцепторная связь отличается только способом образования; по свойствам она одинакова с остальными

ковалентными связями

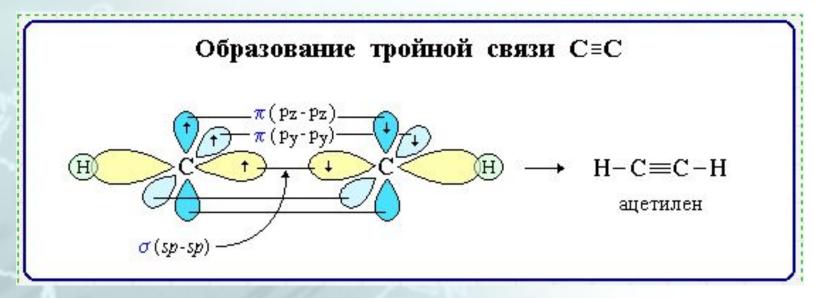
9.2017

образуются при обобществлении двумя атомами более чем одной пары электронов:


```
H_2C : : CH_2; R_2C : : O;
```

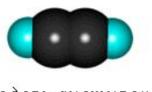
HC::: CH; RC::: N

$$CH_2=CH_2$$
; $R_2C=O$; $HC=CH$; $RC=N$


49 08.09.2017

являются сочетанием σ- и π-связей

Двойная связь состоит из одной σ - и одной π -связей и осуществляется 4-мя общими электронами


являются сочетанием σ- и π-связей

Тройная связь является комбинацией из одной σ - и двух π -связей и включает в себя шесть электронов

- Число электронных пар, участвующих в образовании ковалентной связи называется порядком связи.
- порядок простой связи равен 1,
- двойной 2,
- тройной 3

Модель ацетилена НС≡СН

Электронные формулы молекул

Для изображения электронного строения молекул, ионов или радикалов используются электронные формулы (структуры Льюиса)

Делокализованные π-связи. Сопряжение

связь, электронная пара которой рассредоточена между несколькими (более 2) ядрами атомов

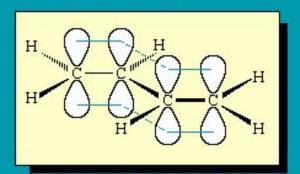
Сопряженная система

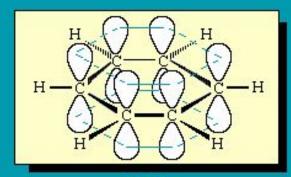
СН2=СН-СН=СН2

делокализованные л-связи

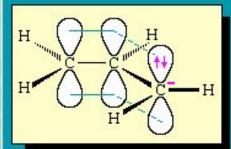
Несопряженная система СН₂=СН-СН₂-СН=СН₂ локализованные л-связи

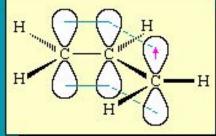
Делокализованные т-связи

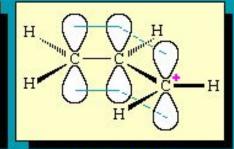

 Рассредоточение электронов энергетически выгодный процесс, т.к. приводит к снижению энергии молекулы


Делокализованные т-связи

Атомно-орбитальные модели


молекул, ионов, радикалов с делокализованными связями


 $CH_2 = CH - CH = CH_2$ $\delta y mague H - 1.3$


Се**Н**е

СН₂ = СН −СН₂ аллил-анион

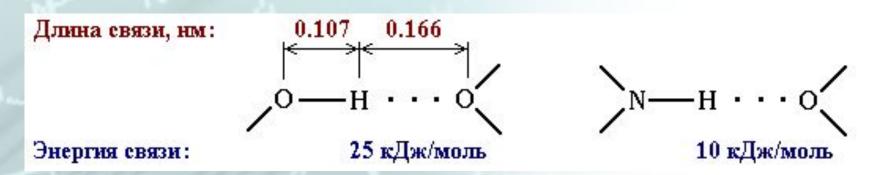
CH₂ = CH - CH₂ annun-pagukan

СН₂ = СН - СН₂ аллил-катион

Система сопряжения может быть открытой или замкнутой

Бензол

Делокализация (сопряжение) п-связей в молекуле бензола


п-зиектронов

Водородные связи (Н-связи)

- Атом водорода, связанный с электроотрицательным элементом (азотом, кислородом, фтором и др.), испытывает недостаток электронов и способен взаимодействовать с неподелённой парой электронов другого электроотрицательного атома.
- В результате возникает водородная связь, которая графически обозначается тремя точками:

Водородные связи (Н-связи)

 Эта связь значительно слабее других химических связей (энергия ее образования 10-40 кДж/моль) и в основном определяется электростатическим и донорно-акцепторным взаимодействиями:

В молекуле спирта R-O-H химическая связь между атомом водорода и более электроотрицательным атомом кислорода весьма полярна. Водород имеет частичный положительный заряд (δ+), а кислород - частичный отрицательный (δ-):

Следовательно, возможно образование водородных связей между молекулами спирта:

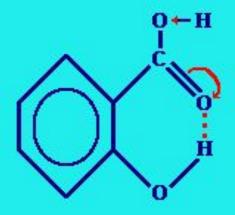
Это приводит к ассоциации молекул и объясняет относительно высокую т.кип. спиртов:

В присутствии воды возникают водородные связи между молекулами спирта и воды:

- Межмолекулярные водородные связи обусловливают ассоциацию молекул, что приводит к повышению температур кипения и плавления вещества.
- Например, этиловый спирт C_2H_5OH , способный к ассоциации, кипит при $+78,3^{\circ}C$, а диметиловый эфир CH_3OCH_3 , не образующий водородных связей, лишь при $24^{\circ}C$ (молекулярная формула обоих веществ C_2H_4O).

- Образование Н-связей с молекулами растворителя способствует улучшению растворимости.
 - Так, метиловый и этиловый спирты (СН₃ОН, С₂Н₅ОН), образуя Н-связи с молекулами воды, неограниченно в ней растворяются.

- Внупримолекулярная водородная связь образуется при благоприятном пространственном расположении в молекуле соответствующих групп атомов и специфически влияет на свойства.
- Например, H-связь внутри молекул салициловой кислоты повышает ее кислотность.


Межмолекулярные водородные связи

$$R$$
 R R $Q - H \cdots Q - H$

Ассоциация молекул спирта (повышение т.кип. и т.пл.)

Гидратация молекул спирта (улучшение растворимости)

Внутримолекулярная водородная связь

Самицимовая кисмота (легкость отрыва H⁺)

В каких случаях ковалентная связь образуется:

- а) по донорно-акцепторному механизму;
- б) по обменному механизму?

I.
$$H + H \rightarrow H_2$$

II. $CH_3 - NH_2 + HCl \rightarrow [CH_3 - NH_3]^+ Cl^-$
III. $CH_3OH + H^+ \rightarrow CH_3O^+H_2$
IV. $C + 2H_2 \rightarrow CH_4$

Ответ 1 : a) Π , Π ;

б) I, IV

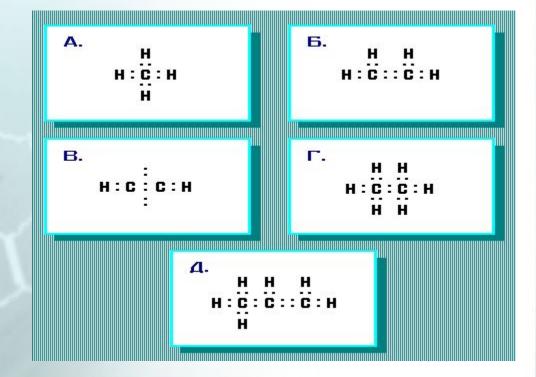
Ответ 2 : a) I, IV; б) Π , Π

Ответ 3: a) Π , Π , IV; б) I

Ответ 4:a) **II**;

б) I, Ш, IV

Какие электронные формулы соответствуют соединениям с кратными


связями?

Ответ 1 : A, Γ

Ответ 2: А, Б

Ответ 3: Б, В, Г, Д

Ответ 4: Б, В, Д

- В каких молекулах имеются делокализованные р-связи?
- a) CH₂=CH-CH₂-CH=CH₂
- б) CH₂=CH-CH=CH₂
- в) CH₂=CH₂
- <u>Ответ 1</u>: а, б
 - Ответ 2: б, в
 - Ответ 3: б
 - Ответ 4: а

- Укажите соединения, в которых есть атомы водорода, способные к образованию водородной связи:
- a) CH₃-O-CH₃
- 6) CH₃-NH₂
- в) CH₃-CH₃
- г) CH₃-OH
- Ответ 1: а, г
 Ответ 3: а, б, г

<u>Ответ 2</u>: б, г

Ответ 4: б, в, г

Взаимное влияние атомов

- Взаимное влияние атомов в молекуле, ионе, радикале осуществляется под влиянием электронных и пространственных эффектов.
- Это позволяет определить реакционную способность органических соединений.

Заместители -

любой атом (кроме водорода), который непосредственно не участвует в реакции, но оказывает влияние на реагирующую часть молекулы: на положение и активность реагирующего центра.

0.213

0.092

-0.166

Метанол

Электронные эффекты

Смещение электронной плотности в молекуле, ионе, радикале под влияние заместителей, подразделяются на:

- электронодонорные;
- электроноакцепторные.

Электронодонорные заместители

• атомная группировка (или атом), повышающая электронную плотность на остальной части молекулы

Электроноакцепторные заместители

• атомная группировка (или атом), понижающая электронную плотность на связанном с ним углеводородном фрагменте

Электроноакцепторные заместители

Два вида влияний заместителей:

- •индуктивный эффект (±I);
- -мезомерный эффект (±М).
- В зависимости от смещения плотности различают положительные и отрицательные эффекты.

Индуктивный эффект

Передача по цепи сигма-связей электронного влияния заместителей, которое обусловлено различиями в электроотрицательности атомов

$$\delta\delta\delta+$$
 $\delta\delta+$ $\delta+$ $\delta \delta\delta\delta \delta\delta \delta \delta+$ $\mathbf{CH_3} \to \mathbf{CH_2} \to \mathbf{CH_2} \to \mathbf{X}$ $\mathbf{CH_3} \leftarrow \mathbf{CH_2} \leftarrow \mathbf{CH_2} \leftarrow \mathbf{Y}$ $(\delta\pm>>\delta\delta\pm>>\delta\delta\pm)$ $X, Y-заместители$

Индуктивный эффект

Направление смещения электронной плотности σ-связей обозначается стрелками и символами частичных зарядов (δ+ или δ-)

$$\delta\delta\delta+$$
 $\delta\delta+$ $\delta+$ $\delta \delta\delta\delta \delta\delta \delta \delta+$ $\mathbf{CH_3} \to \mathbf{CH_2} \to \mathbf{CH_2} \to \mathbf{X}$ $\mathbf{CH_3} \leftarrow \mathbf{CH_2} \leftarrow \mathbf{CH_2} \leftarrow \mathbf{Y}$ $(\delta\pm >> \delta\delta\pm >> \delta\delta\delta\pm)$ $X, Y-заместители$

Индуктивный эффект

- Из-за слабой поляризуемости σ-связей І-эффект быстро ослабевает с удалением заместителя и через 3-4 связи практически равен нулю.
- В зависмости от смещения наблюдают положительные +I-эффекты и олтрицательные -I-эффекты.
- I-эффект водорода равен нулю.

-І-эффект

- Проявляет заместитель, уменьшающий электронную плотность
- Заместитель приобретает частичный отрицательный заряд, атом углерода – положительный.

+І-эффект

- Проявляет заместитель, увеличивающий электронную плотность
- Заместитель приобретает частичный положительный заряд, атом углерода отрицательный.

$$H - C - C \leftarrow C \leftarrow C \leftarrow C \leftarrow Li$$
 (+*I*-эффект атома лития) $H + H + H + H$

Мезомерный эффект

- Передача электронного влияния заместителей по сопряжённой π-системе.
- Благодаря подвижности π-электронов передаётся по цепи без затухания

$$H_2^{\delta +}CH = CH = 0$$
:

Правила определения величины и знака М-эффекта

Правило 1.

- Величина М-эффекта растет с увеличением заряда заместителя.
- Ионы проявляют наиболее сильный М-эффект:

$$(-M)$$
 -CH=NH < -CH=NH₂ (+M) -OH < -Ö:

86 08.09.2017

-М-эффект заместителей тем сильнее, чем больше электроотрицательность имеющихся в заместителе элементов:

$$-CR=CR < -CR=NR < CR=O$$

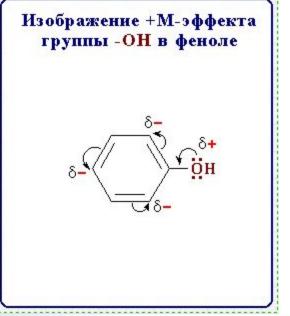
$$-C \equiv CR < -C \equiv N < -NO_2$$

$$-BR_2 < -AlR_2$$

• Группа C=O в этом случае связана с группировками, +M-эффект которых в ряду O^- , NH_2 , OH, OR уменьшается и, наконец, для CH_3 и H - равен нулю.

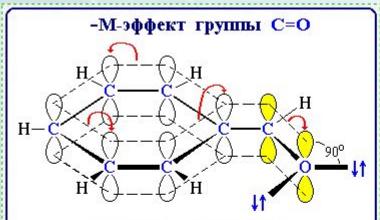
- В хлорацильной группе -C(O)Cl атом хлора проявляет +M-эффект, однако он значительно слабее -I-эффекта
- мезомерное взаимодействие невелико вследствие относительно малой степени перекрывания существенно различающихся орбиталей 2p-AO sp^2 -rибридизованного атома углерода и 3p-AO хлора

+М-эффект заместителя тем сильнее, чем меньше электроотрицательность гетероатома, входящего в его состав:


$$-\ddot{N}R_2 > -\ddot{O}R > -\ddot{F}$$
:
 $-PR_2 > -SR$

Исключение составляют галогены:

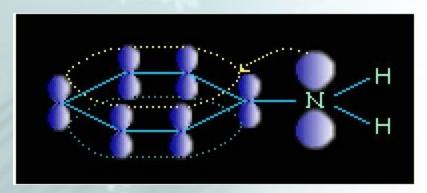
+М-эффект


- Характерен для групп:-OH, -NH₂, -OR.
- В молекуле фенола С₆Н₅-ОН группа ОН проявляет +М-эффект за счёт неподелённых пар кислорода:

-М-эффект

- Характерен для групп СОН, СООН, NO_2 .
 В молекуле фенола C_6H_5 -СОН пи
 - орбиталь расположена перпендикулярно

Атомно-орбитальная модель


молекулы бензальдегида

Электронная плотность в молекуле смещена в сторону более электроотрицательного атома кислорода. Электроны неподеленных пар кислорода находятся на sp²-гибридных орбиталях и не могут участвовать в сопряжении, т.к. нет перекрывания р- и sp²-AO (угол 90°).

Изображение -М-эффекта группы C=O в бензальдегиде

Суммарный электронный эффект

В случае противоположной направленности индуктивного и мезомерного эффектов общее действие заместителя определяется более сильным эффектом.

Суммарный электронный эффект

в молекуле анилина аминогруппа NH₂ одновременно проявляет -*I*-эффект (за счет большей электроотрицательности атома азота по сравнению с углеродом) и +*M*-эффект (за счет участия неподеленной пары электронов в системе р-сопряжения):

Суммарный электронный эффект

Заместитель	Электронные эффекты		Суммарный
	индуктивный	мезомерный	эффект**
Алкильные группы (R)	+/	слабый + <i>М</i> *	донор
-NH ₂ , -NHR, -NR ₂	-I	+М (больше, чем –I)	донор
-ОН	-I	+М (больше, чем –l)	донор
-OR	-I	+М (больше, чем –I)	донор
Галогены	-I	+М (меньше, чем –I)	акцептор
-NO ₂	-I	-M	акцептор
>C=O	-I	-M	акцептор
-COOH	-I	-M	акцептор
−SO₃H	-I	-M	акцептор

^{*}Если алкильная группа содержит С-Н-связи, способные к сверхсопряжению.

^{**} Для заместителя при атоме углерода в сопряженной системе.

Пространственные эффекты

- (стерические) эффекты определяют доступность реакционных центров в молекуле.
- Объёмные группы могут блокировать центры в молекуле и снижать её реакционную способность.

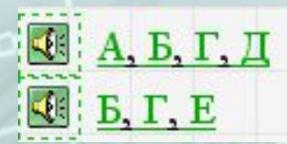
Пространственные эффекты

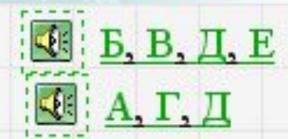
Скорость реакции присоединения по С=О-группе снижается в ряду:

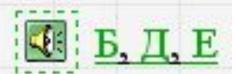
$$H$$
 $H_{3}C$ $C=O$ $>$ $H_{3}C$ $C=O$ $>$ $H_{3}C$ $C=O$ $C=O$ $C=O$ $C=O$

1. Контрольная работа

Укажите соединения, в которых заместитель проявляет -I-эффект по отношению к метильной группе:

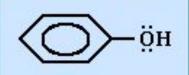

A. CH₃-I


Б. CH₃-CH₃


B. CH₃-Na

 Γ . CH_3 - NH_2 Д. CH_3 - CCl_3

E. CH₃-MgBr



2. Контрольная работа

В каком случае атом кислорода вызывает -М-эффект?

$$CH_2=CH-C < 0:$$

Углеводороды

• органические соединения, в состав которых входят только два элемента: углерод и водород.

- CH₄, C₂H₆, C₃H₆, C₆H₆, C₈H₁₀ и т.п.
- В общем виде С Н.

101 08.09.2017

- атомы углерода способны соединяться между собой в цепи различного строения:

- даже при одинаковом количестве атомов углерода в молекулах углеводороды могут отличаться числом атомов водорода: C_6H_{14} , C_6H_{12} , C_6H_{10} , C_6H_8 , C_6H_6

103

- одному и тому же элементному составу молекул (одной молекулярной формуле) может соответствовать несколько различных веществ - изомеров:

104

Классификацию углеводородов проводят по следующим структурным признакам, определяющим свойства этих соединений:

- строение углеродной цепи (углеродного скелета);
- наличие в цепи кратных связей С=С и С≡С (степень насыщенности)

Классификация углеводородов

- 1. В зависимости от строения углеродной цепи углеводороды подразделяют на две группы:
- ациклические или алифатические;
 - циклические

Классификация углеводородов

Среди циклических углеводородов выделяют:

- алициклические (т.е. алифатические циклические);
 - ароматические (арены).
- В этом случае классификационным признаком служит строение цикла.

Классификация углеводородов

- 2. По степени насыщенности различают:
- насыщенные углеводороды (алканы и циклоалканы);
- ненасыщенные (непредельные),
 содержащие наряду с одинарными
 связями С-С двойные и/или тройные
 связи (алкены, алкадиены, алкины,
 циклоалкены, циклоалкины)

Классификация углеводородов

09.2017

Алканы

• алифатические (ациклические) предельные углеводороды, в которых атомы углерода связаны между собой простыми (одинарными) связями в неразветвленные или разветвленные цепи:

Алканы

 Алканы - название предельных углеводородов по международной номенклатуре.

Парафины - исторически сложившееся название, отражающее свойства этих соединений.

Предельными, или насыщенными, эти углеводороды называют в связи с полным насыщением углеродной цепи атомами водорода.

Алканы

• углеводороды, состав которых выражается общей формулой $C_n H_{2n+2}$, где n - число атомов углерода

1. Сначала изображаем молекулу линейного изомера (ее углеродный скелет) на примере алкана C_6H_{14} :

$$C-C-C-C-C$$

113 08.09.2017

2. Затем цепь сокращаем на 1 атом углерода и этот атом присоединяем к какому-либо атому углерода цепи как ответвление от нее, исключая крайние положения:

- З. Когда все положения основной цепи исчерпаны, сокращаем цепь еще на 1 атом углерода
- Теперь в боковых ответвлениях разместятся 2 атома углерода:

4. После построения углеродного скелета изомера необходимо дополнить все углеродные атомы в молекуле связями с водородом - C_6H_{14} соответствует 5 изомеров :

Номенклатура

- Номенклатура органических соединений система правил, позволяющих дать однозначное название каждому индивидуальному веществу.
- В настоящее время общепринятой является систематическая номенклатура ИЮПАК (IUPAC International Union of the Pure and Applied Chemistry Международный союз теоретической и прикладной химии)

Радикалы в ряду алканов

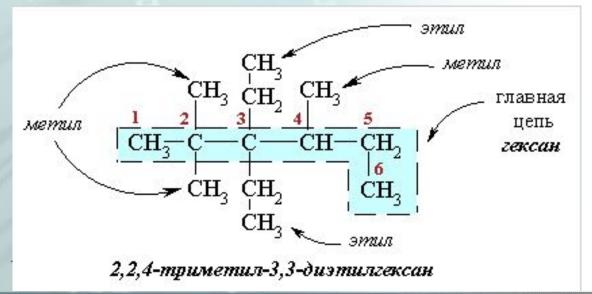
- Общее название одновалентных радикалов алканов алкилы образовано заменой суффикса ан на ил: метан метил, этан этил, пропан пропил
- Одновалентные радикалы выражаются общей формулой C_nH_{2n+1} :

Радикалы

Радикалы подразделяются на первичные, вторичные и третичные:

Алкан	Радикал	Название радикала
СН3-СН2-СН2-СН3 н-бутан	-CH ₂ -CH ₂ -CH ₂ -CH ₃	н-бутил
	−CH−CH₂−CH₃ CH₃	втор-бутил
СН3-СН-СН3 - СН3 изобутан	-CH ₂ -CH-CH ₃ CH ₃	изобутил
	CH ₃ -C -CH ₃ -CH ₃	трет-бутил

Правила построения названий


- 1. Для простейших алканов $(C_1 C_4)$ приняты тривиальные названия: метан, этан, пропан, бутан, изобутан.
 - 2. Начиная с пятого гомолога, названия нормальных (неразветвленных) алканов строят в соответствии с числом атомов углерода, используя греческие числительные и суффикс -ан: пентан, гексан, гептан, октан, нонан, декан и т.

Правила построения названий

- 3.В основе названия разветвленного алкана лежит название входящего в его конструкцию нормального алкана с наиболее длинной углеродной цепью.
- При этом углеводород с разветвленной цепью рассматривают как продукт замещения атомов водорода в нормальном алкане углеводородными радикалами.

Правила построения разветвлённых алканов

- корень+суффикс название нормального алкана, приставки цифры и названия углеводородных радикалов.
- Пример построения названия:.

1. Состав алканов отражает общая формула . . . a) C_nH_{2n} 6) C_nH_{2n+2} B) C_nH_{2n-2} Γ) Варианты ответов (выберите правильный): Ответ 1: формула а Ответ 2: формула б Ответ 3: формула в Ответ 4: формула г

```
Какие соединения относятся к гомологическому ряду метана: а) C_2H_4 б) C_3H_8 в) C_4H_{10} г) C_5H_{12} д) C_7H_{14}?
```

```
Ответ 1: соединения а, в, г
Ответ 2: соединения б, г, д
Ответ 3: соединения б, в, г
Ответ 4: соединения г, д
```

Укажите названия углеводородных радикалов:

```
<u>Ответ 1</u>: a - H-пропил; b - H-бутил; b - H-бутил;
```

Установите соответствие между формулой радикала и его названием:

$$\begin{array}{c} \textbf{-}\text{CH}_2\text{-}\text{CH-CH}_3 \\ \text{CH}_3 \end{array}$$

$$-CH_2-(CH_2)_2-CH_3$$

изопропил

н-пропил

н-бутил

втор-бутил

трет-бутил

изобутил

Химические свойства алканов

- определяются его строением, т.е. природой входящих в его состав атомов и характером связей между ними.
- Исходя из справочных данных о связях С-С и С-Н, можно предсказать, какие реакции характерны для алканов

Характеристики связей в алканах

Связь	Энергия связи, кДж/моль	Диина связи, нм	Дипольный момент, Д
C-C	348	0,154	О
C-H	414	0,110	0,30

Химические свойства алканов

• 1. предельная насыщенность алканов не допускает реакций присоединения, но не препятствует реакциям разложения, изомеризации и замещения.

Химические свойства алканов

- 2. симметричность неполярных С-С и слабополярных С-Н ковалентных связей (см. значения дипольных моментов в табл. 2.5.1) предполагает их гомолитический (симметричный) разрыв на свободные радикалы

Крекинг алканов

- реакции расщепления углеродного скелета крупных молекул при нагревании и в присутствии катализаторов.
 - Два вида крекинга:
 - термический (без доступа воздуха)
 - каталитический

130

Галогенопроизводные алканов (галогеналканы)

- Галогенопроизводные алканов широко применяются для синтеза алканов с заданным строением молекул.
- Для этого используется реакция взаимодействия их с активными металлами (реакция Вюрца-получение чётных алканов):

$$C_2H_5I + 2Na + IC_2H_5 \longrightarrow C_4H_{10} + 2NaI$$

Галогенопроизводные алканов (галогеналканы)

• Чтобы получить алкан с нечётным количеством атомов углерода потребуется два различных галогеналкана:

```
CH_3Br + 2Na + BrC_4H_9 \rightarrow C_5H_{1\,2} (пентан) + 2NaBr
Но при этом также будут происходить реакции:
```

$$2CH_3Br + 2Na \rightarrow C_2H_6$$
 (этан) + $2NaBr$
 $2C_4H_9Br + 2Na \rightarrow C_8H_{18}$ (октан) + $2NaBr$

132 08.09.2017

Нуклеофильное замещение (S_N)

положительно заряженный углеродный атом, связанный с галогеном, является центром атаки нуклефофильными частицами $(OH^-, OR^-, CN^-, NH_2^- \text{ и др.})$:

Механизм-1 (S_N1) двухстадийный

Спадия 1. Алкилгалогенид, отщепляя галоген (электролитическая диссоциация), превращается в карбокатион:

Стадия 1 является лимитирующей. Поскольку в ней участвует только одна частица

134

Механизм-1 (S_N1) двухстадийный

Стадия 2. Карбокатион взаимодействует с нуклеофилом (донором пары электронов) с образованием конечного продукта:

$$\begin{array}{c} \text{CH}_{3} \\ \text{CH}_{3} - \text{C}_{+}^{+} + \text{H}^{\delta +} - \overset{\delta -}{\text{OH}} \xrightarrow{6 \text{MCTPO}} & \text{CH}_{3} - \text{CH} - \text{CH}_{3} + \text{H}^{+} \\ \text{H} & \text{OH} & \text{OH} \end{array}$$

Механизм-2 (S_N2) - одностадийный

заключается в практически одновременном отщеплении галогенид-иона и присоединении гидроксид-аниона (без образования карбокатиона):

$$\begin{array}{c} \mathrm{CH_{3}-CH-CH_{3}+:OH}^{-} \rightarrow \begin{bmatrix} \mathrm{CH_{3}} \\ \delta_{-} & \delta_{-} \\ \mathrm{HO}\cdots & \mathrm{CH} \end{bmatrix} \rightarrow \mathrm{CH_{3}-CH-CH_{3}+Cl:}^{-} \\ \mathrm{Cl} & \mathrm{CH_{3}} \end{array}$$

активированный комплекс (переходное состояние)

Получение алканов

Алканы выделяют из природных источников:

- природный и попутный газы,
- нефть,
- каменный уголь.

Используются также синтетические методы.

Дайте названия радикалам следующих алканов:

- пропан
- декан
- ОКТАН
- этан
- пентан
- гексан

Напишите процесс расщепления для следующих алканов, используя общую формулу крекинга

$$C_nH_{2n+2} \xrightarrow{t} C_mH_{2m} + C_pH_{2p+2}$$
, где m+p=n

- ОКТАН
- декан
- гептан

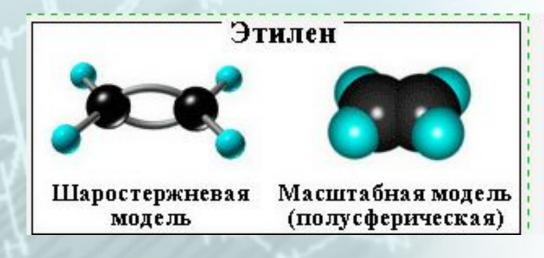
Алкены

- (этиленовые углеводороды, олефины) непредельные алифатические углеводороды, молекулы которых содержат двойную связь.
- Общая формула ряда алкенов:

 C_nH_{2n}

Простейшие представители

С₂H₄


СН₂=СН₂

этилен
(этен)

С₃Н₆

СН₂=СН-СН₃

пропилен
(пропен)

Алкены

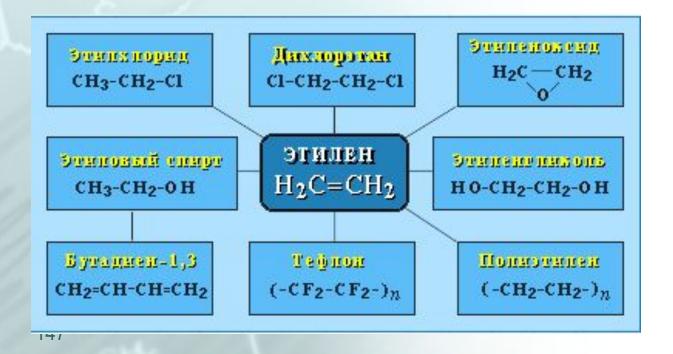
- В отличие от предельных углеводородов, алкены содержат двойную связь C=C, которая осуществляется 4-мя общими электронами: $H_2C::CH_2$.
- В образовании такой связи участвуют атомы углерода в sp^2 -гибридизованном состоянии

Номенклатура алкенов

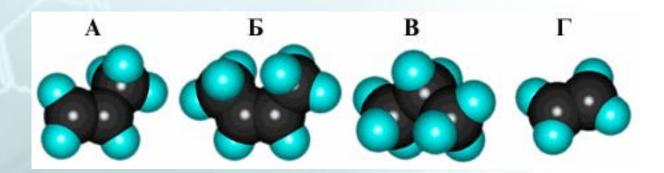
- названия алкенов производят от названий соответствующих алканов (путем замены суффикса -ан на -ен:
- 2 aтома $C \rightarrow \mathsf{этан} \rightarrow \mathsf{этен}$; 3 aтома $C \rightarrow \mathsf{пропан} \rightarrow \mathsf{пропен}$
- Главная цепь выбирается таким образом, чтобы она обязательно включала в себя двойную связь.

Номенклатура алкенов

- Нумерацию углеродных атомов начинают с ближнего к двойной связи конца цепи.
- Цифра, обозначающая положение двойной связи, ставится обычно после суффикса -ен.
- Например:


8
 7 6 5 4 3 2 1 2 1 2 2 1 2

• В номенклатуре различных классов органических соединений наиболее часто используются следующие одновалентные радикалы алкенов:


Назовите следующие алкены:

Применение алкенов

• Эпилен (этен) $H_2C=CH_2$ используется для получения многих органических соединений.

1. Какие модели соответствуют молекулам алкенов?

Дайте названия следующих алкенов, полученных из алканов:

- пропан
- декан
- ОКТАН
- **- ЭТ Q H**
- пентан
- гексан

Назовите соединение:

$$\begin{array}{c} \operatorname{CH}_3 \\ \operatorname{H}_3\operatorname{C-CH-CE-CH-CH}_3 \\ \operatorname{CH}_2\operatorname{-CH}_3 \end{array}$$

Ответ 1: 3-метил-4-этилпентен-2

Ответ 2: 3-метил-2-этилпентен-3

Ответ 3: 3,4-диметилгексен-2

<u>Ответ 4</u>: 2-этил-3-метилпентен-2

Двойная связь является сочетанием . .

Ответ 1: двух о-связей

Ответ 2: двух п-связей

Ответ 3: одной σ -связи и одной π -связи

Ответ 4: ионной связи и ковалентной

СВЯЗИ

Какова гибридизация атомов углерода в молекуле алкена:

$$^{1}_{\text{CH}_{3}}$$
- $^{2}_{\text{CH}}$ - $^{3}_{\text{CH}}$ - $^{4}_{\text{CH}_{3}}$

```
Ответ 1: 1 и 4 - sp^2, 2 и 3 - sp^3

Ответ 2: 1 и 4 - sp^3, 2 и 3 - sp^2

Ответ 3: 1 и 4 - sp^3, 2 и 3 - sp

Ответ 4: 1 и 4 - не гибридизованы, 2 и 3 - sp^2
```

Алкины

- Алкины (ацетиленовые углеводороды) непредельные алифатические углеводороды, молекулы которых содержат одну тройную связь.
- Общая формула алкинов:

 C_nH_{2n-2}

Простейшие представители

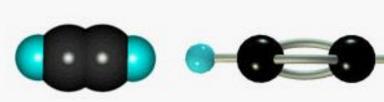
 C_2H_2

 C_3H_4

 $HC \equiv CH$

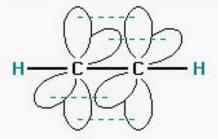
ацетилен

HC≡C-CH₃


пропин

 C_4H_6

 $HC \equiv C - CH_2 - CH_3$ $CH_3 - C \equiv C - CH_3$


бутины

Модели молекулы первого члена гомологического ряда алкинов – ацетилена

Масштабная модель

Шаростержневая модель

Атомно-орбитальная модель

Алкины

- Тройную связь осуществляют шесть общих электронов:

H:C C:H

В образовании тройной связи участвуют атомы углерода в sp-гибридизованном состоянии.

Номенклатура алкинов

- названия алкинов производят от названий соответствующих алканов (путем замены суффикса -ан на -ин:
- 2 атома $C \rightarrow$ этан \rightarrow этин; 3 атома $C \rightarrow$ пропан \rightarrow пропин
- Главная цепь выбирается таким образом, чтобы она обязательно включала в себя тройную связь.

156 08.09.2017

Номенклатура алкинов

- Нумерацию углеродных атомов начинают с ближнего к тройной связи конца цепи.
- Цифра, обозначающая положение тройной связи, ставится обычно после суффикса -ин.
- Например:

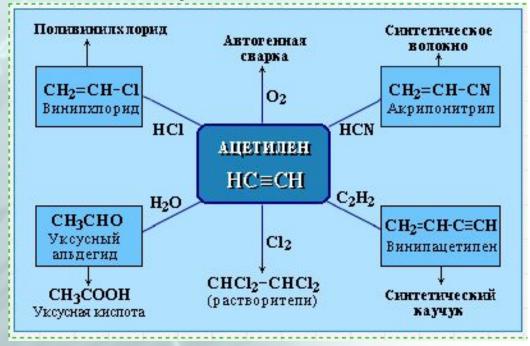
$$\overset{6}{\mathrm{CH_3}} \overset{5}{\overset{-}{\overset{-}{\mathrm{CH}}}} \overset{4}{\overset{-}{\overset{-}{\mathrm{CH}}}} \overset{3}{\overset{-}{\overset{-}{\mathrm{C}}}} \overset{2}{\overset{-}{\overset{-}{\mathrm{C}}}} \overset{1}{\overset{-}{\overset{-}{\mathrm{C}}}} \overset{1}{\overset{-}{\overset{-}{\mathrm{C}}}} \overset{1}{\overset{-}{\overset{-}{\mathrm{C}}}} \overset{2}{\overset{-}{\overset{-}{\mathrm{C}}}} \overset{1}{\overset{-}{\overset{-}{\mathrm{C}}}} \overset{1$$

Номенклатура алкинов

- Для простейших алкинов применяются исторически сложившиеся названия: ацепилен (этин), аллилен (пропин), кропонилен (бутин-1), валерилен (пентин-1).
- В номенклатуре наиболее часто используются следующие одновалентные радикалы алкинов:

С≡СН
 этинил

-CH₂-С≡СН пропаргил


Назовите следующие алкины:

```
CH<sub>2</sub>≡CH<sub>2</sub>
- CH3-CH = CH2
- CH<sub>3</sub>-CH<sub>3</sub>-CH = CH<sub>2</sub>
- CH<sub>3</sub>-CH = CH-CH<sub>3</sub>
- CH, = CH-CH=CH,
• CH<sub>3</sub>-CH ≡ CH<sub>2</sub>
```

159

Применение алкинов

• Наибольшее практическое значение имеют ацетилен и винилацетилен (бутен-3-ин-1).

Тройная связь является сочетанием:

```
Ответ 1: трех о-связей
```

Ответ 2 : одной σ - и двух π -связей

Ответ 3: двух σ - и одной π -связи

Ответ 4: трех п-связей

Какова гибридизация атомов углерода в следующей молекуле:

$$\begin{matrix} 1 & 2 & 3 & 4 & 5 \\ \text{CH} \equiv \text{C} - \text{CH} = \text{CH} - \text{CH}_3 \end{matrix}$$

```
Otbet 1: 1 - sp, 2 - sp, 3 - sp^2, 4 - sp^2, 5 - sp^3

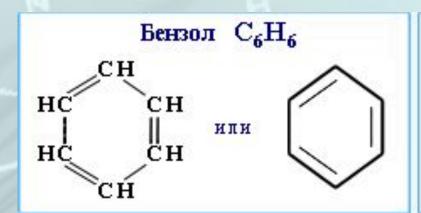
Otbet 2: 1 - sp, 2 - sp^2, 3 - sp^2, 4 - sp, 5 - sp^3

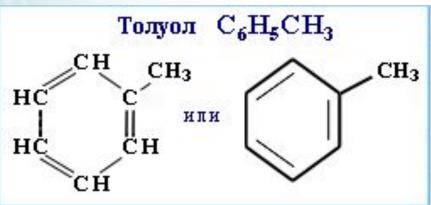
Otbet 3: 1 - sp^3, 2 - sp, 3 - sp, 4 - sp^2, 5 - sp^2

Otbet 4: 1 - sp^2, 2 - sp^3, 3 - sp^3, 4 - sp, 5 - sp^3
```

АРЕНЫ (ароматические углеводороды)

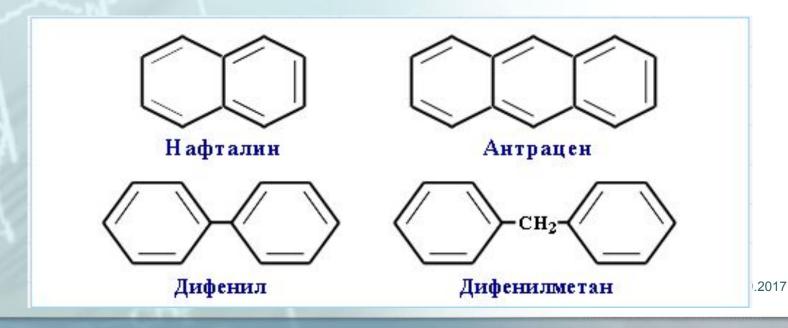
- соединения, молекулы которых содержат устойчивые циклические группы атомов (бензольные ядра) с особым характером химических связей.
- Общая формула алкинов:


 $\mathbf{C_nH_{2n-6}}$, где $n \ge 6$


Простейшие представители

Одноядерные арены:

С6Н6 - бензол


 $C_7^{\circ}H_8^{\circ}$ - толуол (метилбензол).

Простейшие представители

Многоядерные арены: $C_{10}H_8$ - нафталин $C_{14}H_{10}$ - антрацен и др.

Арены

- Ароматичность молекулы означает ее повышенную устойчивость, обусловленную делокализацией π-электронов в циклической системе.

Термин "ароматические соединения" возник давно в связи с тем, что некоторые представители этого ряда веществ имеют приятный запах.

Критерии ароматичности аренов:

- Атомы углерода в sp²-гибридизованном состоянии образуют циклическую систему.
- Атомы углерода располагаются в одной плоскости (цикл имеет плоское строение).
- Замкнутая система сопряженных связей содержит 4n+2π-электронов (n целое число)

 ■ Гомологи бензола – соединения, образованные заменой одного или нескольких атомов водорода в молекуле бензола на углеводородные радикалы (R).

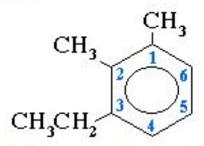
 C_6H_5-R (алкилбензол) $R-C_6H_4-R$ (диалкилбензол)

168 08.09.2017

- Широко используются тривиальные названия (толуол, ксилол, кумол и т. п.).
- Систематические названия строят из названия углеводородного радикала (приставка) и слова бензол (корень):

$$C_6H_5-C_2H_5$$

этилбензол

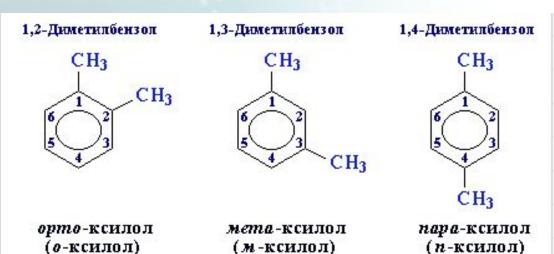

• Если радикалов два или более, их положение указывается номерами атомов углерода в кольце, с которыми они связаны.

 Нумерацию кольца проводят так, чтобы номера радикалов были наименьшими.

Например:

$$CH_3$$
 CH_3
 CH_3
 CH_3

1,3,5-триметил бензол


1,2-диметил-3-этилбензол

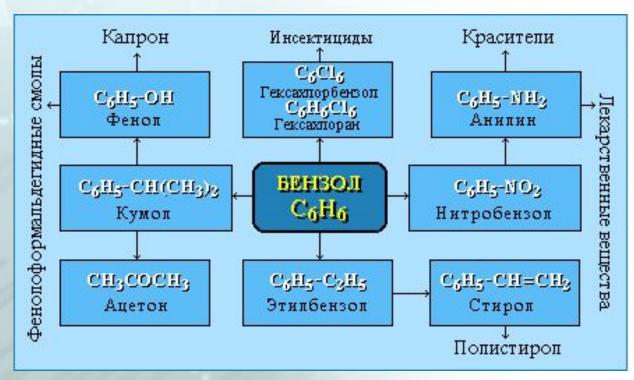
 ■ Для дизамещенных бензолов R-C₆H₄-R используется также и другой способ построения названий, при котором положение заместителей указывают перед тривиальным названием соединения приставками: opmo- (o-); мета- (м-);

пара- (п-)

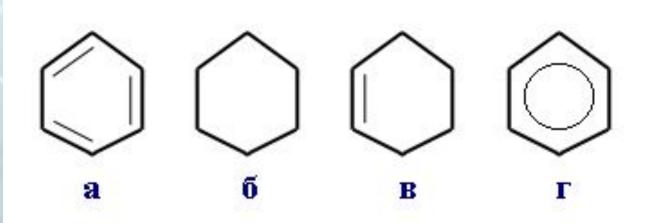
171 08.09.2017

- орто- (о-) заместители у соседних атомов углерода кольца, т.е. 1,2-;
- мета- (м-) заместители через один атом углерода (1,3-);
- пара- (п-) заместители на противоположных сторонах кольца (1,4-):

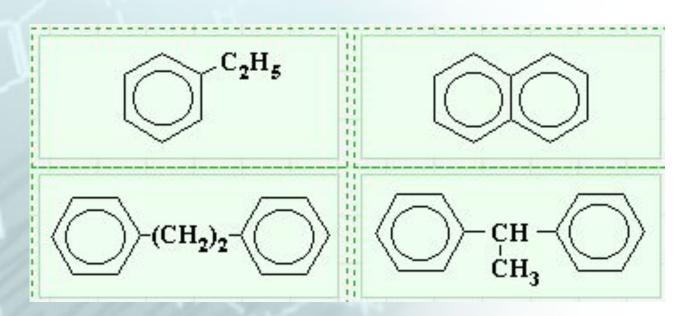
- Ароматические одновалентные радикалы имеют общее название "арил".
- Из них наиболее распространены в номенклатуре органических соединений два:
 - **■**C₆H₅- (фенил)
 - **■**C₆H₅CH₂- (бензил)


173 08.09.2017

Назовите следующие арены:


■ по номенклатуре ИЮПАК и тривиальным названиям:

Применение аренов


• Наибольшее практическое значение имеет бензол:

1. Какие из приведенных на рисунке структур соответствуют бензолу?

Дайте названия следующих ароматических углеводородов:

177 08.09.2017

Какой тип гибридизации характерен для атомов углерода в молекуле бензола?

<u>Ответ 1:</u> sp³

<u>Ответ 2:</u> sp

Ответ 3: sp³d

OTBET 4: sp²

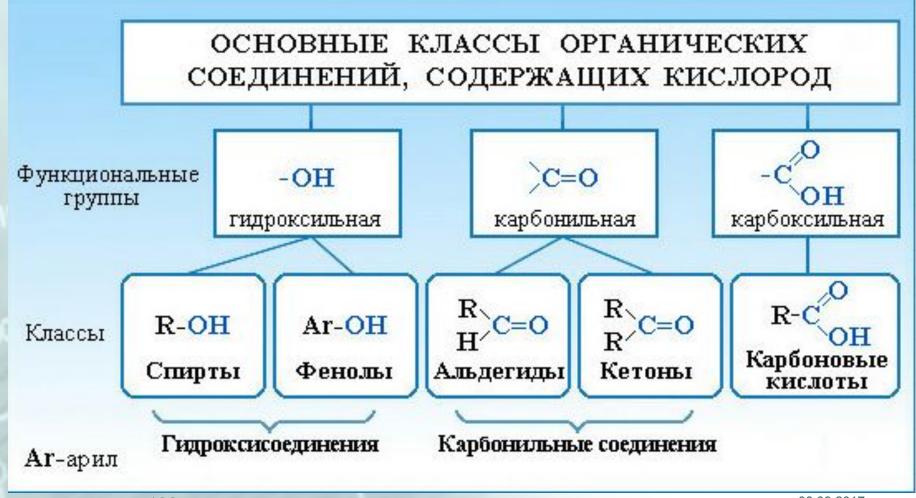
Нарисуйте следующие соединения:

- 1,3,5-тринитробензол
- 2) 3-нитротолуол
- 3) 2-нитротолуол
- 4) 2,4,6-тринитротолуол
- 5) фенилнитрометан

Получение аренов

- Получение и свойства бензола.
 - Напишите уравнение реакции:

$$C_6H_5COONa + NaOH \xrightarrow{t}_{cплавл.}$$
 бензоат натрия

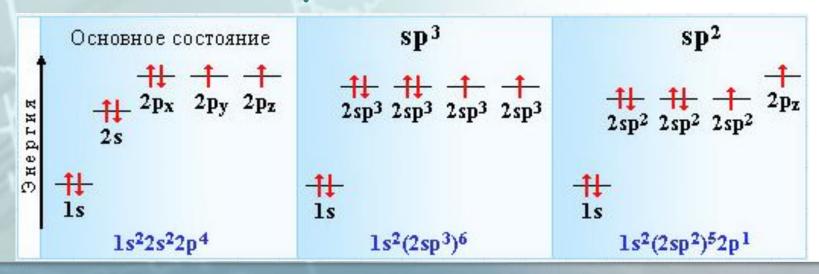

• (видеоролик ехрб.ехе в папке лабораторные опыты)

Кислородсодержащие органические соединения

- известно большое число органических соединений, в состав которых наряду с углеродом и водородом входит кислород.
- атом кислорода содержится в различных функциональных группах, определяющих принадлежность соединения к определенному классу.

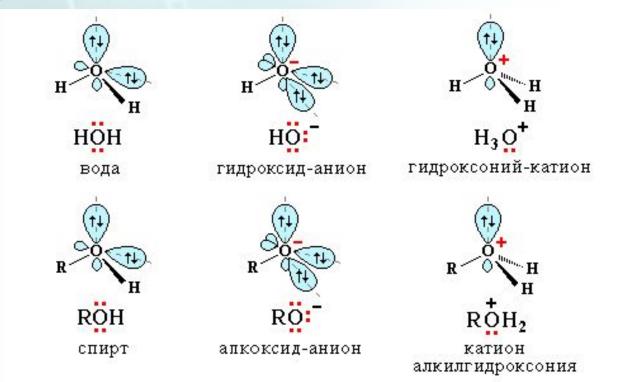
181 08.09.2017

Основные кислородсодержащие соединения

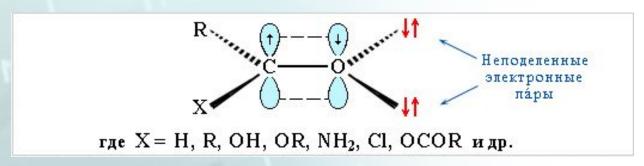


Функциональные группы

- HO-R-CHO гидроксиальдегиды
- HO-R-CO-R' гидроксикетоны
- HO-R-COOH гидроксикислоты
- ROR' простые эфиры
- RCOOR' сложные эфиры
- RCONH₂ амиды
- (RCO)₂O ангидриды
- RCOCI хлорангидриды


Строение кислорода

- Кислород элемент VI А группы 2-го периода периодической системы; порядковый номер 8; атомная масса 16; электроотрицательность 3,5.
- Электронная конфигурация в основном состоянии 1s²2s²2p⁴:


sp³-состояние

 Соединения, содержащие атом кислорода в sp³-гибридизованном состоянии:

sp²-состояние

 sp²-Гибридизованный атом кислорода присутствует в соединениях с карбонильной группой C=O

Гидроксисоединения

- вещества, содержащие одну или более гидроксильных групп -ОН, связанных с углеводородным радикалом:
 - спирты R-OH
 - фенолы Ar-OH
- R алкил (алифатический радикал); Ar арил (ароматический радикал, радикал фенил - C_6H_5)

Спирты

- Спирты соединения алифатического ряда, содержащие одну или несколько гидроксильных групп.
- Общая формула спиртов с одной гидроксигруппой R-OH.

Простейшие спирты				
Название	Формула	Модели		
Метиловый спирт (метанол)	сн ₃ -он			
Этиловый спирт (этанол)	сн ₃ сн ₂ -он			

Классификация спиртов

- 1. По числу гидроксильных групп спирты подразделяются на
 - одноатомные (одна группа -ОН),
 - многоатомные (две и более групп -ОН).
- Современное название многоатомных спиртов
 - полиолы (диолы, триолы и т.д):
 - двухатомный спирт этиленгликоль (этандиол)

трехатомный спирт - глицерин (пропантриол-1,2,3)

Классификация спиртов

2.В зависимости от того, с каким атомом углерода связана гидроксигруппа, различают спирты

```
• первичные R-CH<sub>2</sub>-OH,
```

- вторичные R₂CH-OH,
- третичные R_3C -OH.

Классификация спиртов

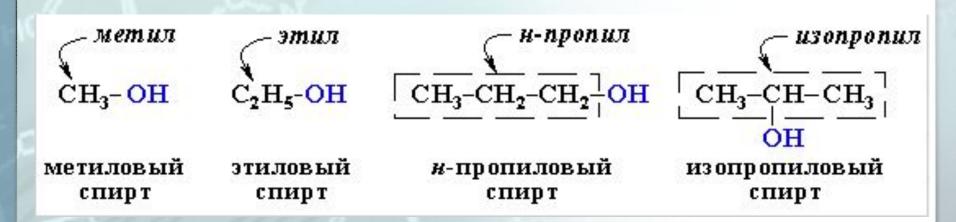
- 3. По строению радикалов, связанных с атомом кислорода, спирты подразделяются на:
 - предельные, или алканолы (CH₃CH₂-OH)
 - непредельные, или алкенолы (CH₂=CH-CH₂-OH)
 - ароматические (С₆H₅CH₂-OH).

 Систематические названия даются по названию углеводорода с добавлением суффикса -ол и цифры, указывающей положение гидроксигруппы (если это необходимо):

 CH₃-OH
 CH₃-CH₂-CH₂-OH
 CH₃-CH-CH₃

 OH
 OH
 OH

 метанол
 этанол
 пропанол-1
 пропанол-2


- Нумерация ведется от ближайшего к ОН-группе конца цепи:

 В многоатомных спиртах положение и число ОН-групп указывают суффиксами диол, триол и цифрами:

194 08.09.2017

- Радикально-функциональная номенклатура ИЮПАК, наличие функциональной группы отражают не суффиксом, а названием соответствующего класса соединений:
- C_2H_5OH этиловый спирт; C_2H_5Cl этилхлорид; $CH_3-O-C_2H_5$ метилэтиловый эфир; $CH_3-CO-CH=CH_2$ метилвинилкетон.

 Названия спиртов производят от названий радикалов с добавления слова спирт:

Назовите следующие спирты:

- CH₃—OH
- CH3-CH2-OH
- · CH₃-CH₂-CH₂-OH
- · CH₃-CH₂-CH₂-CH₂-OH
- · CH₃-CH₂-CH₂-CH₂-CH₂-OH
- CH₃-CH₂-CH₂-CH₂-CH₂-CH₂-OH

197 08.09.2017

Фенолы

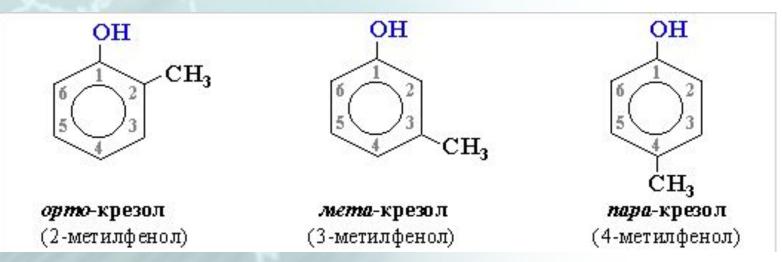
 гидроксисоединения, в молекулах которых ОН-группы связаны непосредственно с бензольным ядром:

Фенолы

В зависимости от числа ОН-групп различают:

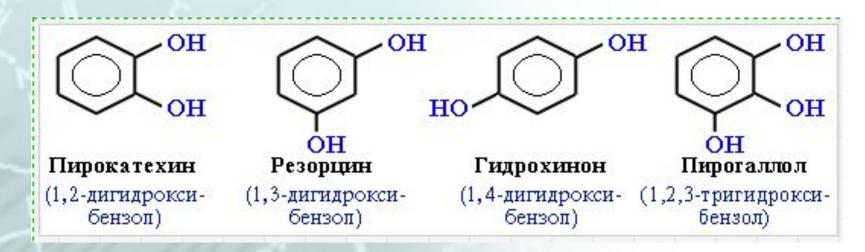
- одноатомные фенолы
- многоатомные.

Среди многоатомных фенолов наиболее распространены двухатомные:


Номенклатура фенолов

 Одноатомные фенолы называются как производные от первого вещества этого ряда - фенола:

$$OH$$
 CH_3 C_2H_5 C_3 C_2H_5 C_3 C_4 C_4 C_5 C_5


Номенклатура фенолов

 В названиях монозамещённых фенолов применяют приставки – орто, мета, пара, а сами фенолы называют крезолами:

Номенклатура фенолов

 Для большинства многоатомных фенолов сохраняются тривиальные названия:

Образование сложных эфиров

- Спирты вступают в реакции с минеральными и органическими кислотами, образуя сложные эфиры.
- Реакция обратима (обратный процесс гидролиз сложных эфиров):

$$R-O-H$$
 + $HO-C-R'$ $\stackrel{H^+}{\Longleftrightarrow}$ $R-O-C-R'$ + H_2O O O O

Образование сложных эфиров

 Название сложного эфира образуется от углеводородного радикала:

Реакционная способность одноатомных спиртов в этих реакциях убывает от первичных к третичным.

08.09.2017

Простые эфиры

Простыми эфирами называют органические вещества, молекулы которых состоят из углеводородных радикалов, соединенных атомом кислорода: R'-O-R", где R' и R" - различные или одинаковые радикалы.

Простые эфиры

- Простые эфиры рассматриваются как производные спиртов.
- Названия этих соединений строятся из названий радикалов (в порядке возрастания молекулярной массы) и слова "эфир":
- CH₃OCH₃ диметиловый эфир;
- $C_2H_5OCH_3 метилэтиловый эфир.$

1. Соединение CH_3 -CHOH- CH_2 - CH_3 относится к классу:

Ответ 1: алканов

Ответ 2: алкенов

Ответ 3: алканолов

Ответ 4: фенолов

Ответ 5: алкандиолов:

Дайте названия следующих спиртов, полученных из алканов:

- бутан
- гептан
- ОКТАН
- пропан
- пентан
- гексан

Водород выделяется в реакции ...

```
Ответ 1: этанол + уксусная кислота
Ответ 2: этанол + Nа металлический
Ответ 3: этанол + водный раствор NaOH
Ответ 4: этанол + уксусный альдегид
```

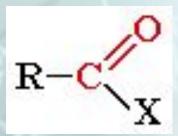
Свойства спиртов

- Взаимодействие спирта и натрия

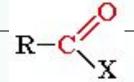
$$2C_2H_5OH + 2K \longrightarrow$$

- Напищите уравнения реакций.
- (видеоролик ор3.ехе в папке лабораторные опыты-кислородсодержащие соединения)

Свойства спиртов


- Образование глицерата меди.
- Напишите уравнение реакции:

• (видеоролик ор2.exe в папке лабораторные - опыты кислородсодержащие соединения)


Кислородсодержащие органические соединения

- Карбонильными соединениями называют органические вещества, в молекулах которых имеется группа >C=O (карбонил или оксогруппа).
- Общая формула карбонильных соединений:

212 08.09.2017

Карбонильные соединения

- В зависимости от типа заместителя X
 эти соединения подразделяют на:
 - **-**альдегиды (X = H);
 - •кетоны (X = R, R');
 - •карбоновые кислоты (X = OH)
 - производные (X = OR, NH₂, NHR,
 Hal и т.д.).

Альдегиды

органические соединения, в молекулах которых атом углерода карбонильной группы (карбонильный углерод) связан с атомом водорода.

Общая формула: R-CH=О или

Функциональная группа -СН=О называется альдегидной.

Кетоны

- органические вещества, молекулы которых содержат карбонильную группу, соединенную с двумя углеводородными радикалами.
- Общие формулы: R₂C=O, R-CO-R' или:

$$R = C = R'$$
 (R, R' = алкил, арил)

Кислородсодержащие соединения

Альдегиды

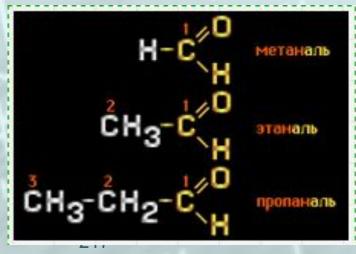
H-C=O H

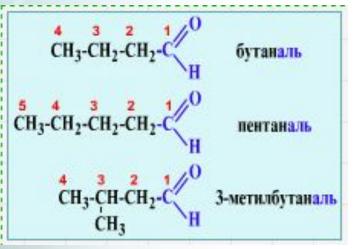
формальдегид (метаналь)

ацетальдегид (этаналь)

Кетоны

CH₃-C=O CH₃


ацетон (пропанон)


Модели простейших карбонильных соединений			
Название	Формула	Модель	
Формальдегид (метаналь)	$H_2^{C=O}$		
Ацетальдегид (этаналь)	CH ₃ -CH=O	88	
Ацетон (пропанон)	(CH ₃) ₂ C=O	Q	

216

Номенклатура альдегидов

 Систематические названия альдегидов строят по названию соответствующего углеводорода и добавлением суффикса -аль. Нумерацию цепи начинают с карбонильного атома углерода:

Номенклатура альдегидов

• Тривиальные названия производят от тривиальных названий тех кислот, в которые альдегиды превращаются при окислении:

Φ	Название		
Формула	систематическое	тривиальное	
H ₂ C=O	метаналь	муравьиный альдегид (формальдегид)	
СН ₃ СН=О	этаналь	уксусный альдегид (ацетальдегид)	
(CH ₃) ₂ CHCH=O	2-метил- пропаналь	изомасляный альдегид	
СН ₃ СН=СНСН=О	бутен-2-аль	кротоновый альдегид	
C ₆ H ₅ -CH=0	бензаљдегид	бензойный альдегид (бензальдегид)	

Номенклатура кетонов

- Систематические названия кетонов несложного строения производят от названий радикалов (в порядке увеличения) с добавлением слова кетон (ИЮПАК):
- СН₃-СО-СН₃ диметилкетон (ацетон);
- CH₃CH₂-CO-CH₃ метилпропилкетон.

219 08.09.2017

Номенклатура кетонов

- В более общем случае название кетона строится по названию соответствующего углеводорода и суффикса -он; нумерацию цепи начинают от конца цепи, ближайшего к карбонильной группе (заместительная номенклатура):
- СН₃-СО-СН₃ пропанон (ацетон);
- CH₃CH₂-CO-CH₃ пентанон-2;
- CH₂=CH-CH₂-CO-CH₃ пентен-4-он-2.

Назовите следующие соединения:

- CH₃-CO-C₄H₉
- · CH3-CH2-COH
- · CH₃-CH₂-CH₂-COH
- CH₃-CH₂-CH₂-CH₂-COH
- · CH₃-CH₂-CH₂-CH₂-CH₂-COH
- · CH₃-CH₂-CH₂-CH₂-CH₂-CH₂-COH
- · CH₃-CH₂-CO-CH₂-CH₃

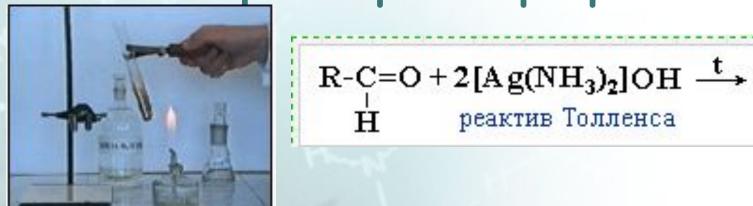
1. Соединение CH_3 -CO- CH_2 - CH_3 относится к классу:

Ответ 1: алканов

Ответ 2: алкенов

Ответ 3: алканолов

Ответ 4: кетонов


Ответ 5: альдегидов

Дайте названия следующих альдегидов, полученных из алканов:

- бутан
- гептан
- ОКТАН
- пропан
- пентан
- гексан

Свойства альдегидов

 Окисление бензальдегида аммиачным раствором серебра

- Напищите уравнения реакций.
- видеоролик орб.ехе в папке лабораторные опыты кислородсодержащие соединения № 2017

Свойства кетонов

- Взаимодействие ацетона с йодом.
 - Напишите уравнение реакции:

$$\text{CH}_3\text{-CO-CH}_3\text{+3I}_2\text{+4NaOH} \longrightarrow$$

• (видеоролик ор7.ехе в папке лабораторные - опыты кислородсодержащие соединения)