
Основы радиационной безопасности

Выполнила: студентка 5 курса, Факультета биоэкологии Иванова Алевтина Владиславовна

Излучение

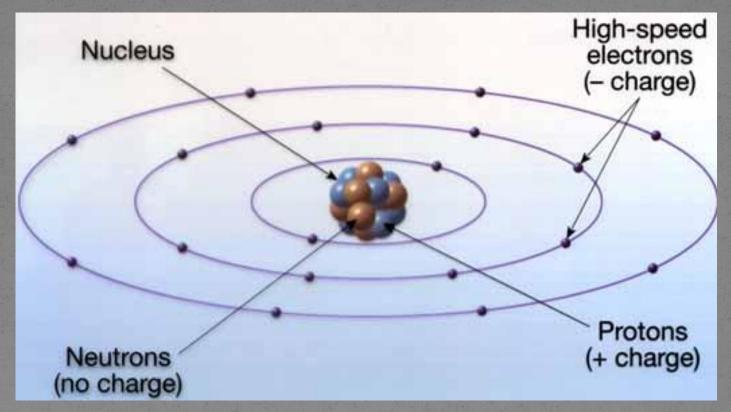
Ионизирующее излучение

излучение, взаимодействие которого со средой приводит к образованию ионов разных знаков.

Классификация ионизирующих излучений по их природе

Ионизирующее излучение			
Электромагнитное (фотонное)	Корпускулярное		
Гамма-излучение - ү	Альфа-изпучение - а		
Рентгеновское излучение	Бета-излучение - β		
	Поток частиц (нейтроны, протоны)		

Ионизирующее излучение


Фотонное	Корпускулярное
Масса покоя отлична от нуля	Масса покоя равна нулю
Поток фотонов высокой энергией	Альба-, бета частицы, нейтроны, протоны
Высокая проникающая и высокая ионизирующая способность.	Высокая проникающая и высокая ионизирующая способность.

Корпускулярное излучение

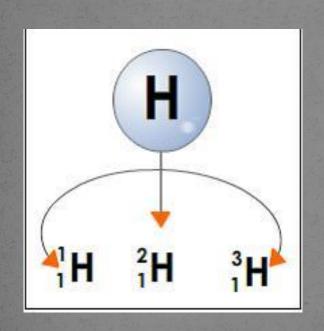
Косвенно ионизирующее Состоит из потока незаряженных частиц

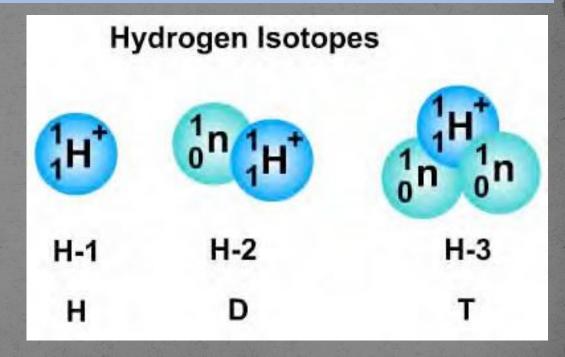
Непосредственное ионизирующее Состоит из потока заряженных частиц.

Строение

М – атомная масса;

Z – заряд ядра (соответствует атомному номеру химического элемента в Периодической таблице Менделеева). Равен количестве протонов в ядре.

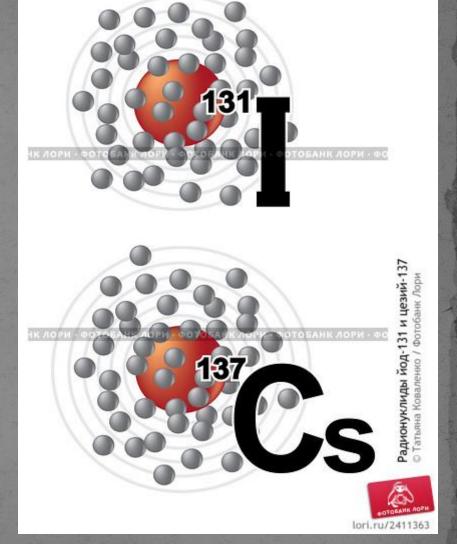

N – количество нейтронов (N = M – Z)


Изотопы

Ядра ,которые имеют одинаковые числа Z, но разные
М и N.

Радиоизотопы – обладают радиоактивностью.

Пример: Йод – 125, Йод – 129, Йод – 131.



Изотопы водорода

Нуклиды

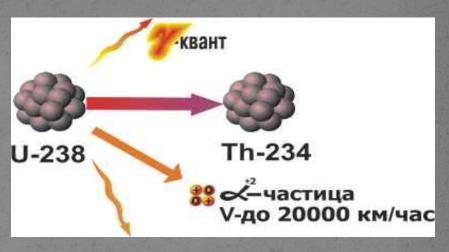
- ядра атомов разных химических элементов.
- Радионуклиды обладают радиоактивностью.
- Пример:
- Йод 131
- Цезий 137
- Стронций 90.

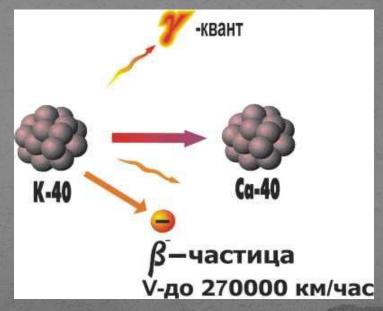
Радионуклиды йода и цезия

Радиоактивность

- свойство неустойчивых атомных ядер данных химических элементов самопроизвольно превращаться в ядра атомов других химических элементов с испусканием одной или нескольких ионизирующих

частиц.

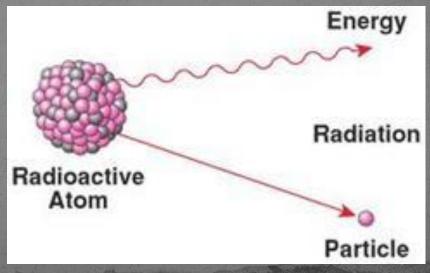

Процесс такого спонтанного ядерного превращения называется радиоактивным распадом. При этом об разовавшееся новое (дочернее) ядро оказывается в более устойчивом состоянии, чем исходное (материнское) ядро.


«Осторожно, радиация!»

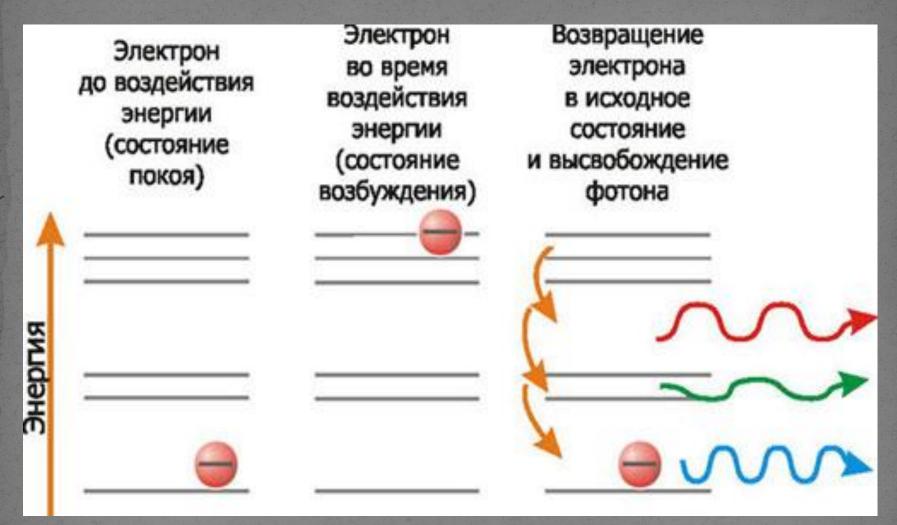
Радиоактивный распад

1. Альфа-распад - выбрасывание (испускание) из ядра атома альфа-частицы.

2. Бета-распад - это испускание бета- или бета⁺частиц, то есть обычных электронов с зарядом -1 (e⁻) или позитронов - "электронов" с зарядом +1 (e⁺).



Радиоактивный распад


3. Нейтронный распад - испускание из ядра атома нейтрона.

4. Протонный распад - крайне редкий вид распада - это испускание из ядра атома протона.

Рентгеновское излучение

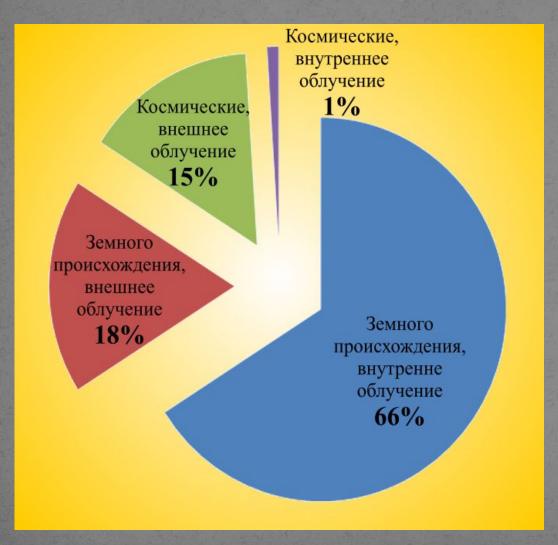
Нормальное и возбужденное состояние атома

Радиоактивность

Естественная

Техногенный радиационный фон от естественных радионуклидов

Искусственная

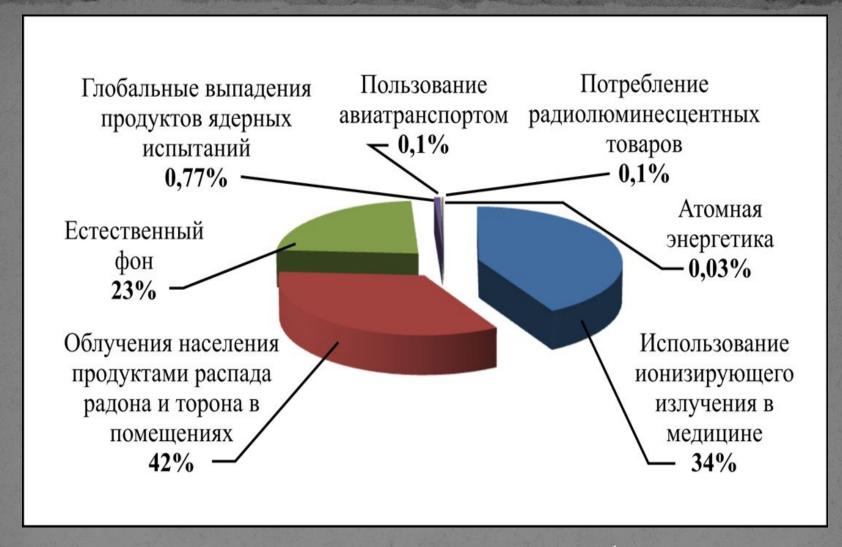

Дозиметрические величины

• - физические величины, функционально связанные с радиационным эффектом.

Термин	Единица измерения		Соотнош ение единиц	Определение
	В системе СИ	В старой системе		
Активность	Беккерель, БК	Кюри, Ки	1 Ки = 3,7 х 10 Бк	Число радиоактивного распада в единицу времени
Мощность дозы	Зиверт в час, Зв/ч	Рентген в час, Р/ч	1мкР/ч = 0,01 мкЗв/ч	Уровень излучения в единицу времени

Термин	Единица измерения		Соотноше ние	Определение
	В системе СИ	В старой системе	единиц	
Поглощенная доза	Грей, Гр	радиан, рад	1 рад = 0,01 Гр	Количество энергии ионизирующего облучения, переданное определенному объекту
Эффективная доза	Зиверт, Зв	Рем	1 рем = 0,01 Зв	Доза облучения, учитывающая различную чувствительность органов к радиации

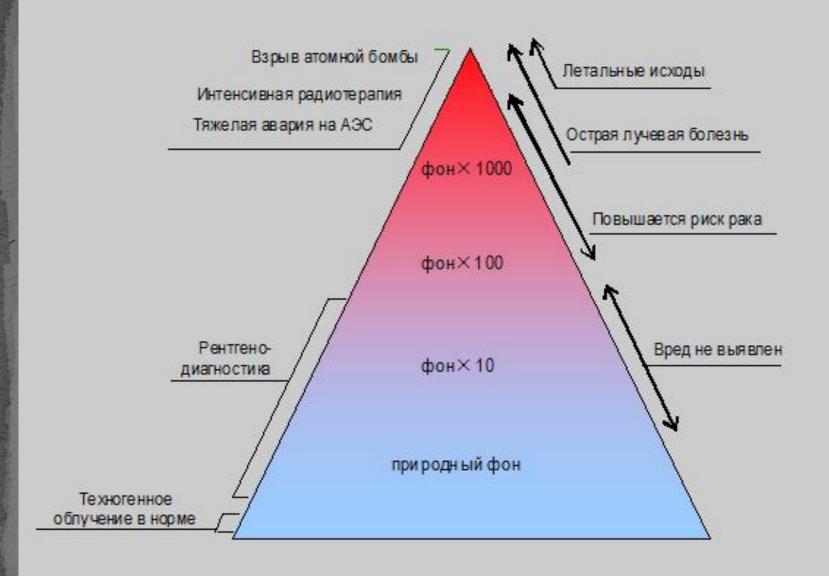
Фоновое облучение человека



Соотношение естественных источников радиации

Источники радона

Источники радиоактивного облучения среднестатистического россиянина за год


Радиационные эффекты облучения людей Детерминированные эффекты.

Имеют дозовый порог.

- 1. Острая лучевая болезнь (ОЛБ).
- 2. Хроническая лучевая болезнь.
- 3. Локальные лучевые повреждения.

Наиболее вероятные эффекты при кратковременном облучении

- ▶ 10000 мЗв (10 Зв) смерть в течение нескольких недель
- ▶ Между 2000 и 10000 мЗв (2 10 Зв) острая лучевая болезнь с вероятным фатальным исходом
- ▶ 1000 мЗв (1 Зв) риск появления раковых заболеваний многими годами позже

Макропрепараты внутренних органов при лучевой болезни.

Рис. 1. Макропрепарат гортани и ротовой части глотки с некротическими изменениями.

Рис. 2. Макропрепарат лёгких и трахеи.

Рис. 3. Макропрепарат сердца с множественными кровоизлияниями.

Рис. 4. Макропрепарат тонкого и толстого кишечника с обширными кровоизлияниями.

Стохастические эффекты

- Не имеют дозового порога.
- 1. Канцерогенные эффекты(злокачественные опухоли, лейкозы).
- 2. Генетические эффекты(наследственные болезни, обусловленные генными мутациями).
- Коллективная эффективная доза величина, определяющая полное воздействие от всех источников на группу людей.

Нормирование радиационного облучения

- СанПиН 2.1.2.2645-10 «Санитарноэпидемиологические требования к условиям проживания в жилых зданиях и помещениях».
- Постановление Главного государственного санитарного врача РФ от 7 июля 2009 г. N 47 "Об утверждении СанПиН 2.6.1.2523-09";
- Постановление Главного государственного санитарного врача РФ от 26 апреля 2010 г. N 40 "Об утверждении СП 2.6.1.2612-10 "Основные санитарные правила обеспечения радиационной безопасности (ОСПОРБ 99/2010)".
- Пределом эффективной дозы облучения для населения является 1 мЗв в год в среднем за любые последовательные 5 лет, но не более 5 мЗв в год.

Методы и средства контроля радиационной обстановки

• Приборы радиационного контроля.

1. Дозиметры. 2. Спектрометры

з. Радиометры

Защита населения от ионизирующих излучений

- Санитарно-защитная зона.
- Зона наблюдения.

• Радиационный контроль . Норвежская АЭС

Ограничение пребывания людей на открытой местности путем укрытия их в убежищах и домах

Исключение или ограничение потребления тех или иных пищевых продуктов Эвакуация населения при высоких уровнях радиации и невозможности провести режим защиты

> Проведение санитарной обработки с последующим дозиметрическим контролем

МЕРЫ ПО ЗАЩИТЕ НАСЕЛЕНИЯ ОТ РАДИАЦИОННОЙ ОПАСНОСТИ

Защита органов дыхания и кожи индивидуальными средствами защиты

> Дезактивация загрязненной местности

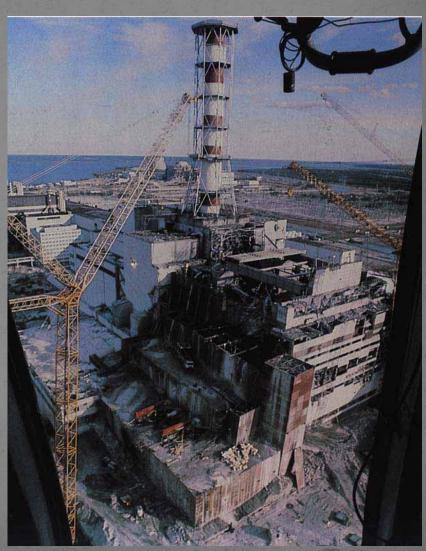
Перевод сельскохозяйственных животных на незараженные пастбища

Соблюдение населением правил личной гигиены

Проведение йодной профилактики

Вид аварии (1946-2005 гг.)	Количество аварий (1946-2005 гг.)
Радиоизотопные установки и их источники	92
Рентгеновские установки и ускорители	39
Реакторные инциденты и потеря контроля над критичностью	33
Случаи с местными лучевыми поражениями на ПО «Маяк» в 1949/56 гг.	168
Аварии на атомных подводных лодках	4
Другие инциденты	12
Чернобыльская авария	1
ИТОГО	176

Аварии на АЭС

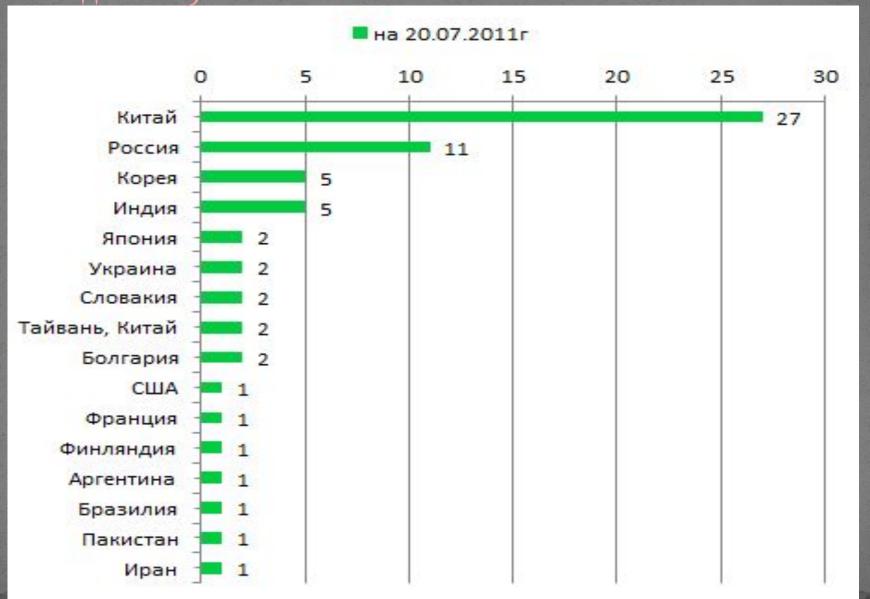

<u> 11 марта. 2011 г. – Фукусима-1, Япония.</u>

Аварии на АЭС

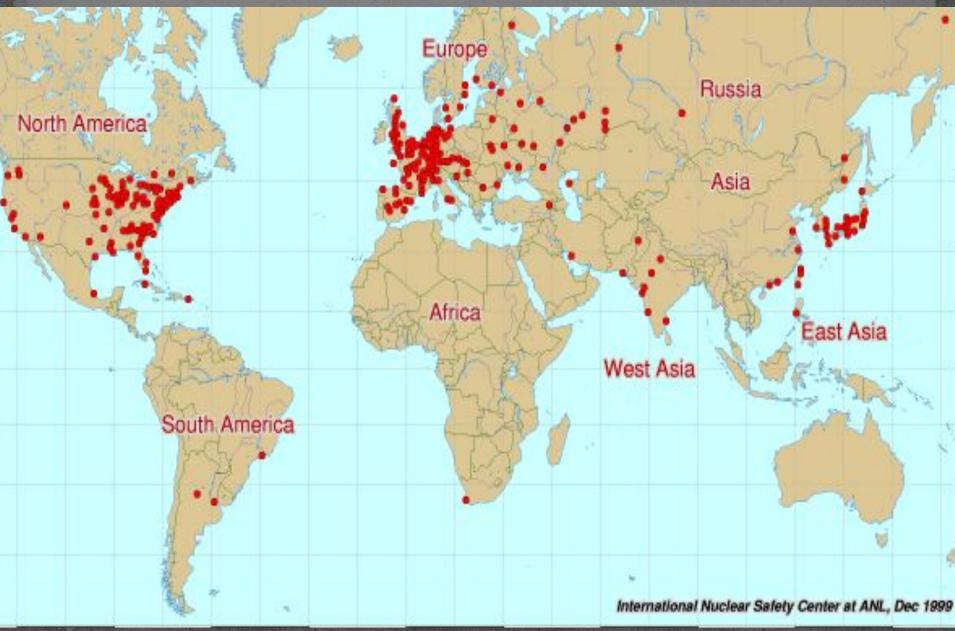
26 апреля 1986 г. –
Чернобыль, Россия.

Аварии на АЭС

28 марта, 1979
г. – авария на АЭС Три- Майл-Айленд;
Пенсильвания , США.


АЭС

- В настоящее время в мире насчитывается:
- 440 действующих ядерных реакторов, суммарной мощность 374 259 ГигаВатт;
- 🧶 5 реакторов в стадии вывода из работы.


АЭС, Уинстербург, Аризона, США.

Кроме того, сейчас **по всему миру в стадии строительства** находится 65 блоков АЭС:

Действующие атомные реакторы

Спасибо за внимание!