Lecture 1: Parallel Architecture Intro

» Course organization:
[0 ~5 lectures based on Culler-Singh textbook
[1 ~5 lectures based on Larus-Rajwar textbook
[1 ~4 lectures based on Dally-Towles textbook
[0 ~10 lectures on recent papers
[1 ~4 lectures on parallel algorithms and multi-thread
programming

* Texts: Parallel Computer Architecture, Culler, Singh, Gupta
Principles and Practices of Interconnection Networks,
Dally & Towles
Introduction to Parallel Algorithms and Architectures,
Leighton
Transactional Memory, Larus & Rajwar !



More Logistics

* Projects: simulation-based, creative, be prepared to
spend time towards end of semester — more details on
simulators in a few weeks

 Grading:
= 50% project
= 20% multi-thread programming assignments
= 10% paper critiques
= 20% take-home final



Parallel Architecture Trends

501 —~

] |:| Other
! _ N
40._ s L
] = - __ Fault Tolerance
o ] N _ -
g \ P
g %0 S .
27 i B 7 B I Dataflow
¢ S| (WNE I
E A\ .,
2 20- 7 g & g Interconnection
. | “ 7| Networks

QNN
RO

10

I Multiprocessors

~

i

1975 1980 1985 1990
Year

ISCA papers 1973-2001 Source: Mark Hill, Ravi Rajwar 3

1995 2000



CMP/SMT Papers

« CMP/SMT/Multiprocessor papers in recent conferences:
2001 2002 2003 2004 2005 2006 2007
01SCA: 3 5 8 6 14 17 19

0 HPCA: 4 6 7 3 11 13 14



Bottomline

» Can’t escape multi-cores today: it is the baseline
architecture

* Performance stagnates unless we learn to transform
traditional applications into parallel threads

* It's all about the data!
Data management: distribution, coherence, consistency

* It's also about the programming model: onus on
application writer / compiler / hardware

* It's also about managing on-chip communication



Symmetric Multiprocessors (SMP)

* A collection of processors, a collection of memory: both
are connected through some interconnect (usually, the
fastest possible)

« Symmetric because latency for any processor to access
any memory is constant — uniform memory access (UMA)

111

Mem Mem Mem Mem
1 2 3 4




Distributed Memory Multiprocessors

» Each processor has local memory that is accessible
through a fast interconnect

* The different nodes are connected as I/O devices with
(potentially) slower interconnect

» Local memory access is a lot faster than remote memory
— non-uniform memory access (NUMA)

» Advantage: can be built with commodity processors and
many applications will perform well thanks to locality

Mem Mem Mem Mem
1 2 3 4

7



Shared Memory Architectures

- Key differentiating feature: the address space is
shared,
l.e., any processor can directly address any memory
location and access them with load/store instructions

» Cooperation is similar to a bulletin board — a processor
writes to a location and that location is visible to reads
by other threads



Shared Address Space

Process P1

Private

Process P2

<z

Private

Process P3

Physical address space

Virtual address space
of each process



Message Passing

* Programming model that can apply to clusters of workstations, SMPs,
and even a uniprocessor

» Sends and receives are used for effecting the data transfer — usually,
each process ends up making a copy of data that is relevant to it

« Each process can only name local addresses, other processes, and
a tag to help distinguish between multiple messages

» A send-receive match is a synchronization event — hence, we no
longer need locks or barriers to co-ordinate

10



Models for SEND and RECEIVE

» Synchronous: SEND returns control back to the program
only when the RECEIVE has completed

* Blocking Asynchronous: SEND returns control back to the
program after the OS has copied the message into its space
-- the program can now modify the sent data structure

* Nonblocking Asynchronous: SEND and RECEIVE return
control immediately — the message will get copied at some
point, so the process must overlap some other computation
with the communication — other primitives are used to
probe if the communication has finished or not

11



Deterministic Execution

» Shared-memory vs. message passing
* Function of the model for SEND-RECEIVE
* Function of the algorithm: diagonal, red-black ordering

.t

) @
@ o ©
O @

!

O
@
* Need synch after every anti-diagonal
@ O * Potential load imbalance
O

12



Cache Coherence

A multiprocessor system is cache coherent if

- a value written by a processor is eventually visible to
reads by other processors — write propagation

* two writes to the same location by two processors
are
seen In the same order by all processors — write
serialization

13



Cache Coherence Protocols

* Directory-based: A single location (directory) keeps track
of the sharing status of a block of memory

« Snooping: Every cache block is accompanied by the
sharing
status of that block — all cache controllers monitor the
shared bus so they can update the sharing status of the
block, if necessary

[0 Write-invalidate: a processor gains exclusive access of
a block before writing by invalidating all other copies
[ Write-update: when a processor writes, it updates other

shared copies of that block y



Title

Bullet

15



