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Lecture 1: Parallel Architecture Intro

• Course organization:
� ~5 lectures based on Culler-Singh textbook
� ~5 lectures based on Larus-Rajwar textbook
� ~4 lectures based on Dally-Towles textbook
� ~10 lectures on recent papers
� ~4 lectures on parallel algorithms and multi-thread

      programming

• Texts: Parallel Computer Architecture, Culler, Singh, Gupta
            Principles and Practices of Interconnection Networks,
                                                                Dally & Towles
            Introduction to Parallel Algorithms and Architectures,
                                                                Leighton
            Transactional Memory, Larus & Rajwar
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More Logistics

• Projects: simulation-based, creative, be prepared to
  spend time towards end of semester – more details on
  simulators in a few weeks

• Grading:
▪ 50% project
▪ 20% multi-thread programming assignments
▪ 10% paper critiques
▪ 20% take-home final
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Parallel Architecture Trends

Source: Mark Hill, Ravi Rajwar
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CMP/SMT Papers

• CMP/SMT/Multiprocessor papers in recent conferences:

                2001    2002     2003     2004      2005      2006      2007

� ISCA:      3          5           8           6           14         17          19

� HPCA:     4         6            7          3           11          13          14
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Bottomline

• Can’t escape multi-cores today: it is the baseline
  architecture

• Performance stagnates unless we learn to transform
  traditional applications into parallel threads

• It’s all about the data!
  Data management: distribution, coherence, consistency

• It’s also about the programming model: onus on
  application writer / compiler / hardware

• It’s also about managing on-chip communication
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Symmetric Multiprocessors (SMP)

• A collection of processors, a collection of memory: both
  are connected through some interconnect (usually, the
  fastest possible)

• Symmetric because latency for any processor to access
  any memory is constant – uniform memory access (UMA)
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Distributed Memory Multiprocessors

• Each processor has local memory that is accessible
  through a fast interconnect

• The different nodes are connected as I/O devices with
  (potentially) slower interconnect

• Local memory access is a lot faster than remote memory 
  – non-uniform memory access (NUMA) 

• Advantage: can be built with commodity processors and
  many applications will perform well thanks to locality
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Shared Memory Architectures

• Key differentiating feature: the address space is 
shared,
  i.e., any processor can directly address any memory
  location and access them with load/store instructions

• Cooperation is similar to a bulletin board – a processor
  writes to a location and that location is visible to reads
  by other threads
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Shared Address Space
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Message Passing

• Programming model that can apply to clusters of workstations, SMPs,
  and even a uniprocessor

• Sends and receives are used for effecting the data transfer – usually,
  each process ends up making a copy of data that is relevant to it

• Each process can only name local addresses, other processes, and
  a tag to help distinguish between multiple messages

• A send-receive match is a synchronization event – hence, we no
  longer need locks or barriers to co-ordinate
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Models for SEND and RECEIVE

• Synchronous: SEND returns control back to the program
  only when the RECEIVE has completed

• Blocking Asynchronous: SEND returns control back to the
  program after the OS has copied the message into its space
  -- the program can now modify the sent data structure

• Nonblocking Asynchronous: SEND and RECEIVE return
  control immediately – the message will get copied at some
  point, so the process must overlap some other computation
  with the communication – other primitives are used to
  probe if the communication has finished or not
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Deterministic Execution

• Need synch after every anti-diagonal
• Potential load imbalance

• Shared-memory vs. message passing 
• Function of the model for SEND-RECEIVE
• Function of the algorithm: diagonal, red-black ordering
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Cache Coherence

A multiprocessor system is cache coherent if

• a value written by a processor is eventually visible to
  reads by other processors – write propagation

• two writes to the same location by two processors 
are
  seen in the same order by all processors – write 
  serialization
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Cache Coherence Protocols

• Directory-based: A single location (directory) keeps track
  of the sharing status of a block of memory

• Snooping: Every cache block is accompanied by the 
sharing
  status of that block – all cache controllers monitor the
  shared bus so they can update the sharing status of the
  block, if necessary

� Write-invalidate: a processor gains exclusive access of
    a block before writing by invalidating all other copies
� Write-update: when a processor writes, it updates other
    shared copies of that block
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