
1

Lecture 1: Parallel Architecture Intro

• Course organization:
� ~5 lectures based on Culler-Singh textbook
� ~5 lectures based on Larus-Rajwar textbook
� ~4 lectures based on Dally-Towles textbook
� ~10 lectures on recent papers
� ~4 lectures on parallel algorithms and multi-thread

 programming

• Texts: Parallel Computer Architecture, Culler, Singh, Gupta
 Principles and Practices of Interconnection Networks,
 Dally & Towles
 Introduction to Parallel Algorithms and Architectures,
 Leighton
 Transactional Memory, Larus & Rajwar

2

More Logistics

• Projects: simulation-based, creative, be prepared to
 spend time towards end of semester – more details on
 simulators in a few weeks

• Grading:
▪ 50% project
▪ 20% multi-thread programming assignments
▪ 10% paper critiques
▪ 20% take-home final

3

Parallel Architecture Trends

Source: Mark Hill, Ravi Rajwar

4

CMP/SMT Papers

• CMP/SMT/Multiprocessor papers in recent conferences:

 2001 2002 2003 2004 2005 2006 2007

� ISCA: 3 5 8 6 14 17 19

� HPCA: 4 6 7 3 11 13 14

5

Bottomline

• Can’t escape multi-cores today: it is the baseline
 architecture

• Performance stagnates unless we learn to transform
 traditional applications into parallel threads

• It’s all about the data!
 Data management: distribution, coherence, consistency

• It’s also about the programming model: onus on
 application writer / compiler / hardware

• It’s also about managing on-chip communication

6

Symmetric Multiprocessors (SMP)

• A collection of processors, a collection of memory: both
 are connected through some interconnect (usually, the
 fastest possible)

• Symmetric because latency for any processor to access
 any memory is constant – uniform memory access (UMA)

Proc 1 Proc 2 Proc 3 Proc 4

Mem
1

Mem
2

Mem
3

Mem
4

7

Distributed Memory Multiprocessors

• Each processor has local memory that is accessible
 through a fast interconnect

• The different nodes are connected as I/O devices with
 (potentially) slower interconnect

• Local memory access is a lot faster than remote memory
 – non-uniform memory access (NUMA)

• Advantage: can be built with commodity processors and
 many applications will perform well thanks to locality

Proc 1 Mem
1 Proc 2 Mem

2 Proc 3 Mem
3 Proc 4 Mem

4

8

Shared Memory Architectures

• Key differentiating feature: the address space is
shared,
 i.e., any processor can directly address any memory
 location and access them with load/store instructions

• Cooperation is similar to a bulletin board – a processor
 writes to a location and that location is visible to reads
 by other threads

9

Shared Address Space

Shared

Private

Private

Private

Process P1

Process P2

Process P3

Shared

Shared

Shared

Pvt P1

Pvt P2

Pvt P3

Virtual address space
of each process

Physical address space

10

Message Passing

• Programming model that can apply to clusters of workstations, SMPs,
 and even a uniprocessor

• Sends and receives are used for effecting the data transfer – usually,
 each process ends up making a copy of data that is relevant to it

• Each process can only name local addresses, other processes, and
 a tag to help distinguish between multiple messages

• A send-receive match is a synchronization event – hence, we no
 longer need locks or barriers to co-ordinate

11

Models for SEND and RECEIVE

• Synchronous: SEND returns control back to the program
 only when the RECEIVE has completed

• Blocking Asynchronous: SEND returns control back to the
 program after the OS has copied the message into its space
 -- the program can now modify the sent data structure

• Nonblocking Asynchronous: SEND and RECEIVE return
 control immediately – the message will get copied at some
 point, so the process must overlap some other computation
 with the communication – other primitives are used to
 probe if the communication has finished or not

12

Deterministic Execution

• Need synch after every anti-diagonal
• Potential load imbalance

• Shared-memory vs. message passing
• Function of the model for SEND-RECEIVE
• Function of the algorithm: diagonal, red-black ordering

13

Cache Coherence

A multiprocessor system is cache coherent if

• a value written by a processor is eventually visible to
 reads by other processors – write propagation

• two writes to the same location by two processors
are
 seen in the same order by all processors – write
 serialization

14

Cache Coherence Protocols

• Directory-based: A single location (directory) keeps track
 of the sharing status of a block of memory

• Snooping: Every cache block is accompanied by the
sharing
 status of that block – all cache controllers monitor the
 shared bus so they can update the sharing status of the
 block, if necessary

� Write-invalidate: a processor gains exclusive access of
 a block before writing by invalidating all other copies
� Write-update: when a processor writes, it updates other
 shared copies of that block

15

Title

•
Bullet

