
Передача нервных импульсов

Передача импульса в нервной системе происходит в несколько этапов:

- проведение по нервному волокну электрического импульса;
- процесс химической передачи в синапсе с помощью нейромедиатора (либо процесс в электрическом синапсе);
- проведение электрического импульса по следующему нервному волокну, либо реакция мышечной (сокращение миоцита) или железистой ткани (экзоцитоз секрета).

Химическими посредниками в процессе передачи нервного импульса являются биологически активные вещества, выделяемые нервными окончаниями. Эти вещества называются нейромедиаторы (синоним – нейротрансмиттер). В настоящее время открыто более 30 медиаторов, среди которых норадреналин, серотонин, мелатонин, гистамин, дофамин, октопамин, АТФ, ГАМК, глицин, глутамат, аспартат, эндорфины, энкефалины, вазопрессин, окситоцин, вещество Р.

ПРОЦЕСС ХИМИЧЕСКОЙ ПЕРЕДАЧИ

Процесс химической передачи проходит ряд этапов:

- 🖊 синтез медиатора
- его накопление
- высвобождение
- взаимодействие с рецептором
- прекращение действия медиатора

СИНАПСЫ.

Любое взаимодействие между 2 нервными клетками имеет 3 составляющие. Одна из них – клетка или её отросток, которые посылают сигналы, – пресинаптический компонент. Другая – клетка или ее отросток, которая принимает – постсинаптический компонент. И третья – посредник между первыми.

Типы синапсов.

- Возбуждающие
- Тормозные

В зависимости от способа передачи выделяют:

- химические
- электрические
- смешанные синапсы

- Для электрической синаптической передачи характерны:
- отсутствие синаптической задержки;
- проведение сигнала в обоих направлениях;
- независимость передачи сигнала от потенциала пресинаптической мембраны;
- устойчивость к изменениям концентраций концентрации Ca2+ и Mg2+, низкой температуре, некоторым фармакологическим воздействиям.

Для химической передачи характерны: одностороннее проведение сигнала; усиление сигнала; конвергенция многих сигналов на одной постсинаптической клетке; пластичность передачи сигналов (обучение, память и т. д.).

МЕДИАТОРЫ

Нейромедиатор (нейротрансмиттер, нейропередатчик) – это вещество, которое синтезируется в нейроне, содержится в пресинаптических окончаниях, высвобождается в синаптическую щель в ответ на нервный импульс, и действует на специальные участки постсинаптической клетки, вызывая изменения мембранного потенциала и метаболизма клетки.

Существует 4 типа медиаторов:

амины;

аминокислоты;

пуриновые нуклеотиды;

нейропептиды.

Самые важные нейромедиаторы

АЦЕТИЛХОЛИН.

- Основная локализация: медиальное ядро перегородки, диагональная связка, базальное гигантоклеточное ядро. Аксоны этих нейронов проецируются на гиппокамп, проходя через кору больших полушарий.
- Холинергические системы участвуют в таких функциях как память, регуляция движения, уровень бодрствования (ретикулярная формация ствола мозга, базальные ганглии).

НОРАДРЕНАЛИН.

Наряду с адреналином и дофамином относится к катехоламинам.

- Локализация: в мосте (голубое пятно, латеральная ретикулярная формация моста), в продолговатом мозге и ядре одиночного тракта. Многочисленные (несколько сотен) нейроны голубого пятна образуют диффузные проекции большой протяженности, достигая практически всех отделов ЦНС коры больших полушарий, лимбической системы, таламуса, гипоталамуса, спинного мозга.
- В ЦНС, как правило, тормозной медиатор (кора), реже возбуждающий (гипоталамус). Является медиатором во всех постганглионарных симпатических окончаниях, за исключением потовых желез.

АДРЕНАЛИН.

У млекопитающих мало адреналиновых путей. Адреналин секретируется диффузно (в мозговом слое надпочечников) и выполняет, в первую очередь, роль гормона.

ДОФАМИН.

Локализуется в среднем мозге (черная субстанция, вентральная покрышка), обонятельной луковице, гипоталамусе и перивентрикулярной области продолговатого мозга.

СЕРОТОНИН.

Локализация: ядра шва в ростральной части моста, эти нейроны дают проекции к лимбической системе, базальным ганглиям, коре больших полушарий.

L-ГЛУТАМИНОВАЯ КИСЛОТА.

Является главным возбуждающим медиатором, локализуется во всех отделах ЦНС.

АСПАРАГИНОВАЯ КИСЛОТА.

Возбуждающий медиатор в среднем мозге, и в переднем и заднем столбе спинного мозга.

ГАМК.

К обычным тормозным медиаторам головного мозга относится даминомасляная кислота (ГАМК), не входящая в состав белков. ГАМК вырабатывается исключительно в головном и спинном мозгу. Не менее трети (до 50%) синапсов головного мозга используют в качестве медиатора ГАМК.

глицин.

В спинном мозге опосредует постсинаптическое торможения активности мотонейронов, высвобождаясь из окончаний клеток Реншоу. Также является нейромедиатором в тормозных интернейронах промежуточного мозга и ретикулярной формации.

АТФ.

Является медиатором во всех синапсах, образуемых метасимпатическим отделом вегетативной нервной системы на гладких мышцах. Действие АТФ при этом опосредуется пуриновыми рецепторами, сопряженными с кальциевыми ионными каналами.