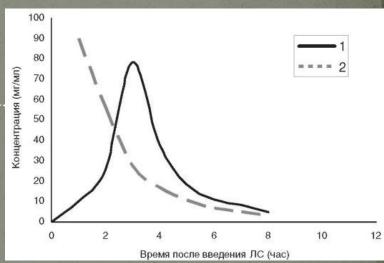
Пероральные лекарственные формы с модифицированным высвобождением

Валеева К.Д 4 курс 322 группа

План:

- Пероральный путь введения
- Лекарственная форма с модифицированным высвобождением-это...
- Задачи
- Классификация
- Технология
- Вспомогательные вещества
- Система «OROS»
- Вывод

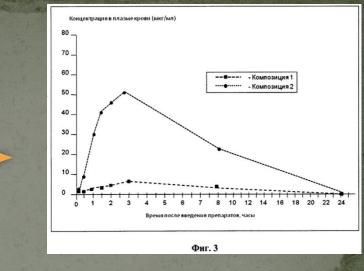

Пероральный путь введения

Преимущества:

- простота и удобство;
- естественность;
- не требуется стерильности, рук медперсонала.

Недостатки:

- медленное наступление эффекта;
- низкая биодоступность;
- индивидуальные различия в скорости и полноте всасывания
- влияние многих факторов на всасывание;
- невозможность применения лекарств, плохо проникающих через слизистую желудочно-кишечного тракта (стрептомицин), разрушающихся в ЖКТ (инсулин, прегнин);
- невозможность использования при рвоте и коме.



ЛФ с модифицированным высвобождением-это...

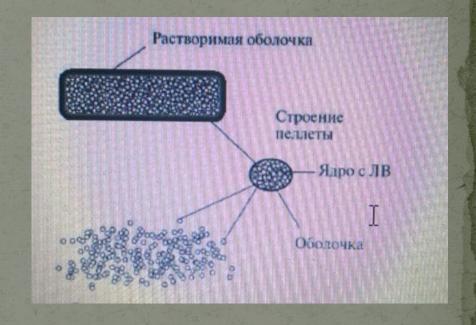
• это группа лекарственных форм с измененными, по сравнению с обычной формой, механизмом и характером высвобождения лекарственных веществ.

Задачи

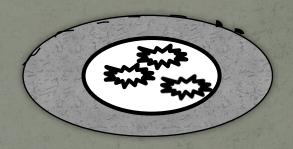
- 1) Повышение биодоступности лекарственного вещества
- 2) Обеспечение длительного терапевтического эффекта лекарственного вещества
- 3) Обеспечение таргетной терапии

Классификация

- А.В зависимости от степени управления процессом высвобождения различают:
- I лекарственные формы с контролируемым высвобождением;
- II лекарственные формы пролонгированные.
- В. По технологии создания выделяют:
- 1-монолитные (матриксные) системы
- 2-резервуарные (мембранные) системы
- 3-насосные (осмотические) системы


Технология. Монолитные системы.

Основу монолитной системы составляет матрикс (матричная или сетчатая структура), который может характеризоваться различными физико-химическими свойствами, быть растворимым или нерастворимым (рис. 1). Матрицы могут набухать и медленно растворятся или сохранять свою геометрическую форму в течение всего пребывания в организме и выводиться в неизменном виде. В последнем случае высвобождение лекарственного вещества происходит путем вымывания, при этом скорость его высвобождения не зависит ни от содержания ферментов, ни от величины рН и остается остаточно постоянной по мере прохождения таблетки через ЖКТ.


Технология. Резервуарная система.


Резервуарные системы состоят из двух частей: оболочки (мембраны), которая образует резервуар, и ядра, в котором находится лекарственное вещество. Высвобождение активных компонентов обеспечивается свойствами оболочки. Механизмами высвобождения являются диффузия через поры мембраны, образующиеся после ее набухания или биодеградации.

Технология. Осмотическая система.

Предназначены для достижения кинетики нулевого порядка на протяжении ограниченного времени абсорбции в ЖКТ. Существует два типа осмотических систем доставки лекарственных средств: генерический осмотический насос и элементарный осмотический насос.

Вспомогательные вещества

EUDRAGIT

В качестве материала для оболочек таблеток за рубежом применяются сополимеры акриловой и метакриловой кислот . Особое место среди них занимают субстанции, выпускаемые фирмой "Rohm Pharma" (Германия), под общим названием "Eudragit". Они - представляют собой органические растворы или водные дисперсии синтетических сополимеров метакриловой кислоты и ее сложных эфиров. В зависимости от соотношения карбоксильных и эфирных групп, эти полимеры растворяются при различных значениях рН. Наряду с чувствительностью к рН среды они могут различаться и скоростью растворения. Их используют ля получения оболочек таблеток, позволяющих регулировать место выхода или скорость выхода действующего вещества из лекарственной формы, или одновременно — место и скорость выхода.

Вспомогательные вещества

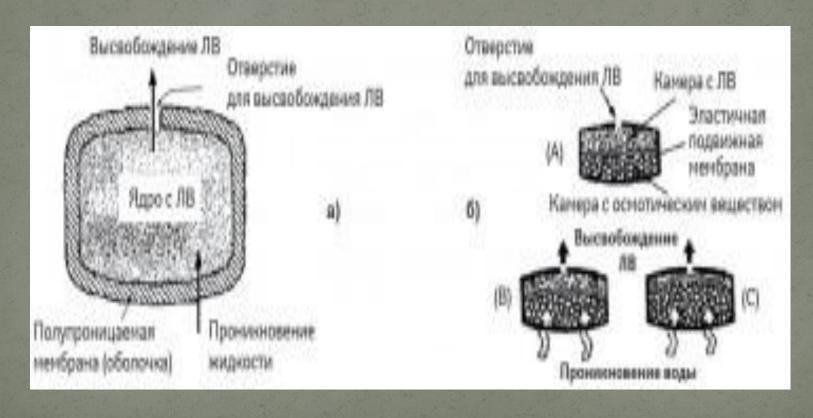
• Колликоут

Ряд синтетических полимеров выпускаются также фирмой BASF под общим названием "Колликоут". Среди них — вещества для создания оболочек, устойчивых или растворимых в кислой среде желудочного сока, а также покрытий, обеспечивающих пролонгированное или, наоборот, моментальное высвобождение действующего вещества из лекарственной формы.

Колликуот VAC – сополимер винилацетата и метакриловой кислоты.(создание матриц)

Колликуот IR-биополимер этиленгликоля и ПВС.(для моментального высвобождения АДС)

Вспомогательные вещества


• Коллидоны

На основе поливинилпирролидона (ПВП) создан ряд продуктов, нашедших применение в современной фармацевтической технологии.

наиболее широкое применение нашли Plasdone К и Plasdone S630 . Plasdone К используется как модификатор вязкости и солюбилизатор, а также как связующее средство для гранул и регулятор высвобождения действующего вещества. Plasdone S630 обеспечивает возможность прямого прессования и сухой грануляции, может также использоваться в качестве пластификатора для пленочных покрытий .

Система OROS

Система OROS относится к энтеральным осмотическим системам.

Возможность локализовать действие препарата не только улучшит качество жизни больного, снизит риск развития побочных эффектов, но и повысит эффективность лечения

СПАСИБО ЗА ВНИМАНИЕ!

