Практика_1

Кинематика

1. Радиус-вектор материальной точки изменяется во времени по следующему закону:

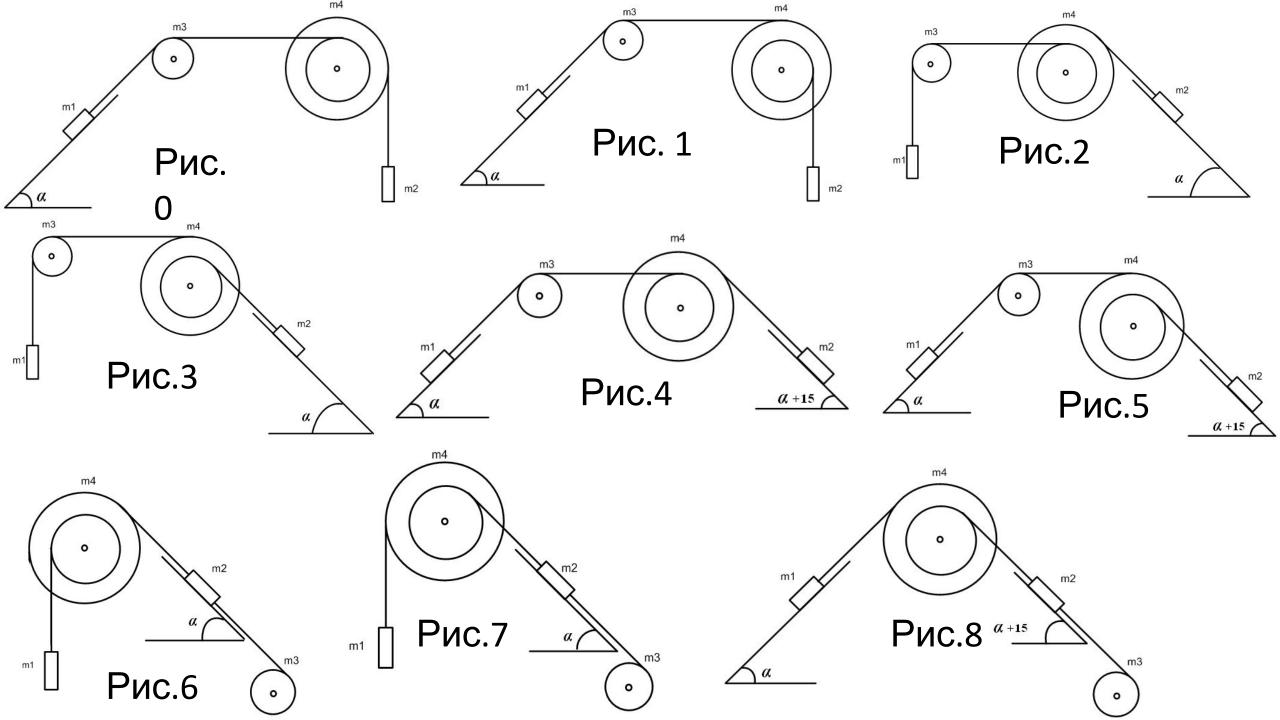
$$\vec{r} = \vec{e}_x \cdot 2\frac{M}{c} + \vec{e}_y \cdot \left(10\frac{M}{c} \cdot t - 5\frac{M}{c^2} \cdot t^2\right) + \vec{e}_z \cdot 4\frac{M}{c} \cdot t$$

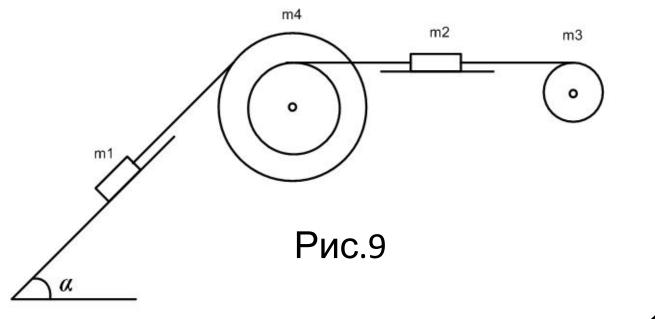
Определить координаты точки, векторы ее скорости и ускорения, а также их модули в конце второй секунды движения (при t=2c).

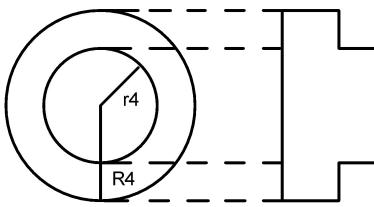
2. Зная радиус земли 6371 Км и ускорение свободного падения на поверхности g=9.8 м/с², определить величину первой космической скорости. (скорость, с которой тело должно лететь параллельно поверхности земли, чтобы никогла не упасть на землю)

- 3. Точка движется по окружности радиусом R = 4 м. Пройденный ею путь определяется уравнением $s = A + Bt^2$, где A=8 м, B=2 м/ c^2 . Определить момент времени t, когда нормальное ускорение a_n точки станет равно 9 м/ c^2 .
- 4. Тело вращается вокруг неподвижной оси по закону φ =A + Bt+ Ct², где A = 10 рад, B= 20 рад/с, C= 2 рад/с². Найти полное ускорение точки, находящейся. на расстоянии r=O,1 м от оси вращения, для момента времени t=4 с.
- 5. Мяч подбрасывают вверх и ловят через 2 сек. Каковы начальная скорость мяча и высота подъема.

Типовой расчет — домашняя контрольная работа выполняется в отдельной тетради или на листах A4. Оформление упрощается при использовании компьютера. Все делается в текстовом редакторе, а затем печатается.

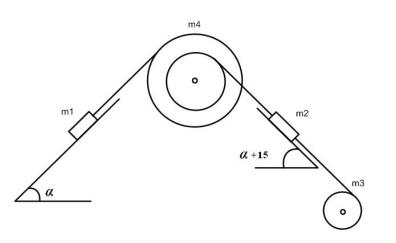

Работа содержит 100 вариантов. Вариант выбирается коду студента. Преподаватель определяет для каждой группы число, которое добавляется к номеру студента в списке группы. По последней цифре этой суммы определяется номер рисунка, а по предпоследней – номер условия в таблице.


Система, показанная на рисунке, состоит из грузов массами та и т, которые движутся поступательно. К грузам прикреплены невесомые нерастяжимые нити, перекинутые или намотанные на блоки массами та, и та, которые могут без трения вращаться вокруг горизонтальных осей. Блок массой т, – сплошной цилиндр, а блок массой m_4 — ступенчатый цилиндр с радиусами ступеней r_4 и R_4 и одинаковой высотой (рисунок 1.10). При движении нити по блокам не проскальзывают, участки нитей для тел на наклонных плоскостях параллельны этим плоскостям, коэффициент трения тел о любую плоскость равен µ. Система начинает движение из состояния покоя. Считая, что все нити и участки плоскостей имеют достаточную длину, выполнить следующие задания:


- 1). Найти ускорения грузов массами m_1 и m_2 и угловые ускорения блоков ϵ_3 , ϵ_4 .
 - 2). Найти силы натяжения всех нитей.
 - 3). Найти силы реакции осей обоих блоков.
- 4). Используя кинематические формулы, найти скорости грузов, угловые скорости блоков и пути, пройденные грузами спустя время т после начала движения.
- 5). Используя кинематические формулы, найти ускорение точки на внешнем радиусе блока m_4 спустя время τ после начала движения по величине и направлению, если вначале эта точка находится в крайнем нижнем положении.

- 6). Найти относительную скорость грузов m_1 и m_2 по величине и направлению в указанный момент.
- 7). Используя закон изменения механической энергии, найти другим способом ускорения, скорости грузов, угловые ускорения и скорости блоков.
- 8). Приняв в п. 4 μ=0, убедиться, что в системе выполняется закон сохранения механической энергии.

	т ₁ , кг	m _{2, кг}	m _{3, кг}	m _{4, кг}	α, град.	μ	r ₃ , r ₄ , M	R ₄ , M	T, C
0	4,0	0,50	0,5	3,0	30º	0,05	0,15	0,40	0,20
1	2,5	0,25	2,0	2,8	45º	0,10	0,20	0,50	0,30
2	1,0	0,10	1,5	2,9	60º	0,15	0,30	0,70	0,40
3	3,5	0,40	2,5	2,5	45º	0,25	0,35	0,80	0,50
4	5,0	0,60	3,0	4,2	30º	0,35	0,40	0,90	0,60
5	6,0	0,75	3,5	3,2	60º	0,45	0,45	1,05	0,65
6	7,0	0,80	5,5	3,4	30º	0,40	0,55	1,25	0,55
7	8,0	1,0	4,0	3,6	60º	0,50	0,25	0,50	0,45
8	12,0	1,5	4,5	3,8	45º	0,30	0,50	0,90	0,35
9	16,0	2,0	6,0	4,0	30º	0,20	0,55	1,0	0,25



Ступенчатый блок m4

Министерство образования Республики Беларусь Учреждение образования Брестский государственный университет Кафедра физики Типовой расчет № 1 *«Кинематика, динамика»* Вариант 99

	т ₁ , кг	m _{2, кг}	m _{3, кг}	m _{4, кг}	α, грд.	μ	r ₄ , M	R ₄ , M	T, C
9	2,5	0,25	2,0	2,8	45 º	0,10	0,20	0,50	0,30

Выполнил:

Студент гр. МАПП-6 Факультета МС

Проверил:

Ворсин Н.Н.

Брест 2014 г.