Лекция 4

Введение в специальность

И.М. Белоусова

Санкт-Петербург 2011

Предпосылки создания лазера

Основа создания лазеров

Теория поглощения и испускания света атомами, созданная Эйнштейном в 1916 г.

Взаимодействие фотонов с системой (атомы и молекулы)

<u>Спонтанное излучение</u> – имеет случайный характер: фазы, направление распространения, поляризация световых волн, излучаемых различными атомами, <u>не согласованы</u> друг с другом

Излучение ансамбля частиц – некогерентно

Вынужденное излучение

Испускаемый фотон не отличим от фотона, который вызвал его появление.

Частота, фаза, направление распространения совпадает с фотоном, вызвавшим его излучение.

Вынужденное излучение – когерентно

Вместо одного фотона → два, т.е. возможно усиление

Необходимое условие

<u>Структурная схема лазера. Первые лазеры.</u>

<u>Основные</u>

<u>элементы лазера</u>

3. Резонатор 2. Источник накачки

 Активная среда с инверсной населенностью уровней, в которой происходит вынужденное излучение (атомы, молекулы)

2. Источник накачки, создающий инверсную населенность уровней в активной среде

3. Резонатор –

обеспечивает обратную связь и генерацию когерентного излучения <u>Первый лазер США</u> <u>Маймана (1960 г.)</u> Ruby Laser and Flash Tube

Схема рубинового лазера

Осциллограмма излучения рубинового лазера (0.5 мс/дел). а) до порога; б) после порога
1. Рубиновый стержень *Al₂O₃+Cr³⁺ (0.05)*2. Зеркала резонатора – алюминий, нанесенный на торцы стержня
3. Источник накачки: спиральная ксеноновая лампа E_{nop}=(CU²/2) ≈ 1 кДж λ=694,3 нм

<u>Первый газовый лазер</u> (1961 г.) (Не-Ne) <u>А. Джаван (США)</u>

Активная среда: смесь газов He+Ne Длина разрядной (P=5 тор) трубки L=100 см Накачка - CBЧ-разряд (30 МГц) Резонатор (многослойные диэлектрические зеркала $R \ge 99\%$ $\lambda_{ген} = 1,15$ мкм (первые опыты) $\lambda_{ген} = 632,8$ мкм (красный луч)

Некоторые вводные понятия

$$E_i$$

 $E_i \rightarrow E_k - излучение$
 $E_k \rightarrow E_i - поглощение$
 $E_i - E_k = hv_{ik} -$
излучательный перехо

 $A_i = 1/\tau_i - вероятность перехода - среднее число фотонов, испускаемых одной частицей за 1 секунду <math>\tau_i$ - время жизни частицы в определенном энергетическом состоянии

$$A_i = \Sigma A_{ik}$$
 – излучательный переход

$$g_k B_{ki} = g_i B_{ik}$$
$$B_{ik} = \frac{g_k}{g_i} B_{ki}$$
$$A_{ik} = \frac{8\pi h \nu^3}{c^3} B_{ik}$$

Соотношение между коэффициентами Эйнштейна

g – степень вырождения уровней

А_{ік} - коэффициент Эйнштейна для спонтанного излучения

Д

Вынужденные переходы происходят под действием внешнего излучения с частотой *v*, удовлетворяющей условию:

$$hv_{ik} = E_i - E_k$$

$$Z_{ki} = B_{ki}N_k\rho_v -$$
число поглощенных квантов за 1 с в 1 см³

$$Z_{ik}^b = B_{ik}N_i\rho_v -$$
число испущенных квантов под воздействием излучения
$$Z_{ik} = A_{ik}N_i$$

$$Z_{ik} = Z_{ik} = Z_{ki}$$

B_{ki} - коэффициент Эйнштейна, соответствующий поглощению

В_{*ik*} - коэффициент Эйнштейна, соответствующий вынужденному излучению

Коэффициент усиления

$I = I_0 e^{-kol}$	- поглощение	г света, закон Буг	repa	
$I = I_0 e^{+kol}$	- усиление св	sema		
$K_0 = \frac{h\nu_{ik}}{c\Delta\nu_{\rm A}} (B)$	$_{ki}N_k - B_{ik}N_i)$			
$B_{ki} = \frac{g_i}{g_k} B_{ik}$				
$K_0 = -\frac{h\nu_{ik}}{c\Delta\nu_{\rm A}}$	$B_{ik}(N_i - \frac{g_i}{g_k})$	(_k)		
$N_i > \frac{g_i}{g_k} N_k$	условие ине	зерсной населенн	ости	
<u>Активная среда в резонаторе</u>				
		$K_0^{\text{pes}} = \frac{K_0}{1 + I/I_s}$	(4)	
К <mark>0</mark> ез - нас	ыщенный коэq	<i>bфициент усилен</i>	ия	

 l_s

Условие генерации - энергетическое

$$K_{0}^{\text{pe3}} = K^{\text{пот}}$$
(6)

$$K^{\text{пот}} = K_{\text{пр}} + \rho_{\text{дисс}}$$
(7)
Из (4)

$$K_{0}^{\text{pe3}} + K_{0}^{\text{pe3}} \cdot \frac{I}{I_{s}} = K_{0}$$
(7)

$$K_{0}^{\text{pe3}} + K_{0}^{\text{pe3}} \cdot \frac{I}{I_{s}} = K_{0}$$
(7)

$$K_{0}^{\text{pe3}} \cdot I_{s} + K_{0}^{\text{pe3}} \cdot I = K_{0}I_{s}s$$
(7)

$$I = I_{s} \cdot \frac{K_{0} - K_{0}^{\text{pe3}}}{K_{0}^{\text{pe3}}} = I_{s} \cdot \frac{K_{0} - K^{\text{пот}}}{K^{\text{пот}}}$$

$$P = I \cdot K_{\text{пр}} - MOUHOCMb \ 6 \ CMAUOHAPHOM \ PE = HOUMEP$$

$$P = I_s \cdot \frac{K_0 - K^{\text{not}}}{K^{\text{not}}} \cdot K_{\text{np}} = 4 \cdot 10^3 (\text{Bt/cm}^2) \cdot \frac{10^{-3} - 0.5 \cdot 10^{-3}}{0.5 \cdot 10^{-3}} \cdot 10^{-4} \left(\frac{1}{\text{cm}}\right)$$
$$= 4 \cdot 10^3 (\text{Bt/cm}^2) \cdot 10^{-4} \left(\frac{1}{\text{cm}}\right) = 0.4 \text{ Bt/cm}^3$$

 $K_{\rm np} = \frac{1}{e} \ln \frac{1}{\sqrt{r_1 \cdot r_2}}$

$$(r_1 \cdot r_2)_{\text{OIIT}} = e^{-2l\sqrt{K_0\rho_{\text{ducc}}} - \rho_{\text{ducc}}}$$

l–длина активной среды

r₁, r₂ – коэффициенты отражения зеркал

<u>Оптические резонаторы</u>

Оптические резонаторы – система двух обращенных друг к другу отражающих поверхностей, между которыми располагается активная среда Резонатор лазера ограничен лишь двумя поверхностями и открыт с других сторон, поэтому он называется открытым резонатором

Назначение резонатора

- Обеспечить многократное прохождение света через активную среду – увеличение эффективности усиления
- Обеспечить направленность излучения лазера (селекция угловых типов колебаний)
- Обеспечить монохроматичность и когерентность излучения лазера (селекция спектра)

Отражающие поверхности могут представлять собой <u>зеркала</u> <u>различной формы</u> (плоские, сферические, параболические); <u>грани призм</u> полного внутреннего отражения, <u>дифракционные</u> <u>решетки</u>

резонаторов: 1 – зеркало резонатора; 2 – полированная поверхность; 3- призма полного внутреннего отражения;

- 4 активное твердое вещество;
- 5 трубка с газовой смесью;
- 6 окно Брюстера; 7 сильфон;
- 8 полупрозрачное зеркало

Схема кольцевого ОКГ

Требования к резонаторной оптике

Наиболее простой резонатор состоит из плоских зеркал

- Плоские зеркала резонатора должны юстироваться с высокой точностью. Так, например, для газовых лазеров параллельность зеркал должна быть не хуже ±1'! Точность юстировки определяется коэффициентом усиления активной среды.
- Качество обработки поверхности зеркал высокое (*∆N≈0.01*)
- Отражающее покрытие, как правило многослойные диэлектрические покрытия

 $R_1 \sim 1, R_2$ – обеспечивает вывод излучения из резонатора. Величина пропускания зависит от коэффициента усиления среды.

• Усиление должно скомпенсировать потери в резонаторе.

Для ликвидации потерь, например, на френелевское отражение на границе двух сред – границу (окна, стенки кристалла) располагают <u>под углом Брюстера</u>

В резонаторе устанавливается поляризация с наименьшими потерями

Зависимость коэффициента отражения на пластинке от угла падения для различной ориентации плоскости поляризации падающего излучения

Вид газовой кюветы в ОКГ с внешним расположением зеркал

Моды резонатора

<u>Мода резонатора</u> характеризуется определенной конфигурацией электромагнитного поля на поверхности зеркал и определенным числом полуволн, укладывающихся на длине резонатора

Теория открытых резонаторов *Л. А. Вайнштейн*

Теория на основе принципа Гюйгенса-Френеля развита **Фоксом и Ли**

Моды резонатора обозначаются *TEM_{mnq}*

m и *n* – целые числа, равные *0*, *1*, *2*.. – обозначают число изменений <u>знака</u> поля на поверхности зеркал -

поперечные моды

q – равно числу полуволн, укладывающихся на длине резонатора – <u>продольные</u> моды

Зависимость потерь мощности за один проход волны от числа Френеля N для круглых плоских зеркал

Распределение интенсивности в поперечном сечении лазерного пучка в некоторых случаях

Моды в оптическом резонаторе

Реализация типов колебаний. Угловая

расходимость лазеров

Реализация типов колебаний (мод) зависит от	Расчеты выполнены Фоксом и Ли	
дифракционных потерь на краях зеркал. Дифракционные потери увеличиваются с ростом индекса моды.	Угловая расходимость зависит от модового состава	
Величина дифракционных потерь зависит от параметра	Для ТЕМ ₀₀ моды	
резонатора, который называется <u>число зон Френеля</u> $N = \frac{a^2}{L^2}$,	$\varphi = 2.44 \frac{\lambda}{D}$ плоский резонатор Для конфокального резонатора	
где <i>a</i> – диаметр амплитуды зеркала резонатора, <i>L</i> – длина резонатора, λ – длина волны излучения Например, <i>a</i> = 0.5 <i>см</i> , <i>L</i> = 100 <i>см</i> , λ = 1.15 <i>мкм</i> (<i>He-Ne</i>	$Q = 2\sqrt{\frac{ln2}{\pi}}\sqrt{\frac{\lambda}{b}} = 0.939\sqrt{\frac{\lambda}{b}}$	
$N = \frac{0.25}{1.15 \cdot 10^{-4} \cdot 100} = 21.7$	<i>b</i> - расстояние между зеркалами	
Потери определяются по формуле (приближенной при N > 10)	- улучшение угловой расходимости	
$\alpha_{\text{диф}} = 5.23 \cdot 10^{-2} \cdot \Lambda^2_{n(m+1)} N^{-3/2} = 8.7\%$	 Увеличение длины резонатора Разъюстировка зеркал 	
 Например, 8.86	3. Дифрагмирование пучка	

<u>Резонансные условия генерации</u>

Стабилизация частоты Не-Ne лазера. Когерентность излучения

Основной метод стабилизации: Частоты Не-Ne лазеров: Поглощающая ячейка внутри резонатора

Контур линии поглощения Ne-ячейки равен естественной ширине линии, так как из-за низкого давления нет лоренцевского уширения, а при помещении в резонатор – нелинейный процесс:

$$\stackrel{\Rightarrow}{\underset{(w_0}{\Rightarrow}} \stackrel{Ne}{\underset{(w_0}{\neq}} \stackrel{Ke}{\underset{(w_0}{\Rightarrow}} \stackrel{Ke}{\underset{(w_0}{\xrightarrow}} \stackrel{Ke}{\underset{(w_$$

<u>Узкие резонансы с шириной</u> 10⁻⁹÷10⁻¹⁰

