Применение антиоксидантов в пищевой отрасли

Воздействие антиоксидантов на организм человека

- На протяжении всей жизни в человеческом организме протекает множество химических реакций, и для каждой из них требуется энергия.
- Для получения энергии организм использует различные вещества, однако для её высвобождения, всегда требуется кислород.
- В процессе окисления органических соединений, находящихся в пище, именно он генерирует энергию.

- Кислород окисляет молекулы до активной формы, получившей название свободные радикалы, которые нужны организму для обмена веществ, нормального дыхания, а также уничтожения посторонних бактерий.
- К свободным радикалам относятся атомы, ионы или молекулы, имеющие один неспаренный электрон на своей внутренней орбите.
- Благодаря тому, что свободные радикалы имеют свободное место для электрона, они всегда пытаются отобрать его у других молекул, тем самым, окисляя любые соединения, с которыми входят в контакт.
- После того как радикал забирает чужой электрон, он становится неактивным.

- При этом лишенная электрона (окисленная) другая молекула вместо него моментально становится новым свободным радикалом.
- Даже инертные молекулы, которые никогда не вступали во взаимодействие с теми или иными компонентами, после такого окисления начинают проявлять себя в новых химических реакциях.
- Современные климатические условия, усиленная солнечная активность, выхлопные газы автомобилей, малейшие частицы асбестовой пыли, табачный дым, поступление в организм радионуклидов с пищей провоцируют увеличение свободных радикалов.

- В организме человека образование свободных радикалов происходит главным образом в митохондриях.
- В первую очередь они повреждают мембраны клеток, потому что последние состоят из жиров, очень слабо удерживающих электроны.
- Это приводит к тому, что мембраны утрачивают способность нормально пропускать кислород и питательные вещества в клетку, и наоборот, начинают больше пропускать токсины и болезнетворные бактерии.
- Такие клетки меньше живут, плохо работают, с трудом делятся и воспроизводят слабое и генетически поврежденное поколение.

- Затем свободные радикалы полностью разрушают структуры клеток и беспрепятственно распространяются по всему организму.
- Как следствие организм теряет сопротивляемость к всевозможным заболеваниям, происходят нарушения работы сердечно-сосудистой и центральной нервной систем, ухудшается процесс пищеварения, возникают гормональные сдвиги, диабет и онкологические заболевания.
- В первую очередь разрушительному действию свободных радикалов в организме человека подвергаются соединения с двойными связями.
- К ним относятся белки, ненасыщенные жирные кислоты, которые содержатся в составе клеточной оболочки, липиды, полисахариды, а также ДНК.

- Свободные радикалы ещё могут образовываться в таких продуктах питания как кондитерские изделия с длительным сроком годности, продукты растительного происхождения, а также мясные продукты.
- В первую очередь это относится к жирам, которые содержат в своём составе ненасыщенные жирные кислоты, легко подвергающиеся окислению.
- Перекисное окисление очень опасно, потому что осуществляется по цепному механизму, поэтому продуктами реакции являются не только свободные радикалы, но и перекиси липидов, запросто превращающиеся в новые радикалы.
- Это приводит к увеличению количества свободных радикалов, и, следовательно, к ускорению процессов окисления.

- В организме человека первоначально присутствуют собственные средства борьбы с избытком свободных радикалов.
- Тем не менее, некоторые радикалы всё-таки проскакивают сквозь антиокислительные ферменты.
- В таком случае из каждого свободного радикала образуется по три новых и еще одна органическая перекись, которая моментально диссоциирует на еще два радикала.
- В конце концов, из 1 радикала создаются 3, из 3–9, далее 27 и т.д.
- После такого штурма клетка, конечно, способна восстановиться, но затем вновь подвергнется нападению свободных радикалов.

- Частота повреждающих воздействий на клетки становится больше, чем скорость их восстановления.
- Поэтому, с увеличением количества свободных радикалов (в частности, при долговременном пребывании на солнце и инфекционных болезнях), увеличивается потребность организма в дополнительных антиоксидантах.
- С окислением свободными радикалами нужно незамедлительно бороться, иначе в организме начинаются процессы старения, увеличивается опасность онкологических заболеваний..

- Для противодействия процессам старения природа создала систему антиоксидантной защиты.
- Антиоксиданты прекращают окисление свободными радикалами, а также и восстанавливают разрушенные молекулы.
- После того, как антиоксидант передаёт свой электрон окислителю, он утрачивает свою активность.
- Для возврата своего рабочего состояния, его необходимо восстановить.
- С этой целью антиоксиданты зачастую сотрудничают в группе.
- К примеру, глютатион способствует восстановлению витамина С, а витамин С в свою очередь возвращает в рабочее состояние витамин Е.
- Антиоксидант может оставаться стабильным, так как способен перераспределять собственные электроны, поэтому ему не составит труда обезвредить свободный радикал за счёт безвозмездной передачи своего электрона.

- В растениях присутствуют достаточно активные антиоксиданты.
- К таким антиокислителям относятся биофлавоноиды или растительные полифенолы.
- Самые мощные антиокислители содержатся в растениях сурового климата.
- К ним относятся кедр, пихта, облепиха, сосна и др. Больше всего антиоксидантов присутствует в кожуре или коре растений, а также в косточках, так как именно в них содержится генетическая информация.

- Антиоксиданты могут быть природного и синтетического происхождения.
- Если вводить их в продукты питания, то благодаря их антиокислительному действию продукты смогут дольше храниться.
- Организм человека не способен создать достаточное количество антиоксидантов, чтобы обезвредить все свободные радикалы, поэтому целесообразно вводить их в ежедневный рацион питания.

- В организме имеется две системы борьбы с окислением.
- К первичной системе относятся антиоксидантыферменты (каталаза, глютатионпероксидаза, супероксиддисмутаза и т.д.), а ко вторичной – антиоксиданты-витамины.
- Эта система защищает организм в течение всей жизни, однако постепенно ослабевает с годами. В связи с чем возникает потребность в её поддержании и дополнении.
- Первичная антиоксидантная защита позволяет всем клеткам уничтожать избыток свободных радикалов.
- Ферменты способствуют превращению активного кислорода в наименее опасные радикалы и перекись водорода, которую, в свою очередь, они расщепляют на молекулярный кислород и воду.

- Не только антиоксиданты ферменты могут блокировать окислительные реакции и восстанавливать уже окисленные молекулы, но и вещества иного происхождения.
- Неферментативными антиоксидантами (вторичная антиоксидантная защита) являются витамины А, К, Е, коэнзим Q₁₀, биофлавоноиды (кверцетин, рутин, цитрин, гесперидин, катехины, антоцианы), серосодержащие аминокислоты цистин и метионин, различные хелаты (комплексные соединение аминокислот с ионами минералов) и микроэлементы цинк, селен и т. д.
- Неферментативные антиоксиданты подавляют агрессивные радикалы, отбирают избыток энергии, при этом не создавая новые источники для производства свободных радикалов.

- Антиоксидантам необходимо взаимодействовать в комплексе, чтобы повысить сопротивляемость системы антиокисления.
- 🕒 К примеру, глютатионпероксидазе требуется селен.
- Витамин С оберегает селен от окисления, а также способствует восстановлению витамина Е, который в свою очередь прекращает окисление липидов.
- Глютатион способствует изменению продуктов перекисного окисления липидов в наименее опасные и оберегает витамин Е, поддерживая необходимый баланс между антиокислительными веществами и свободными радикалами.

- Для того чтобы антиоксиданты замедляли старение, повышали иммунную защиту организма, нормализовали обмен веществ и предотвращали развитие опухолей нужно ежедневно и в больших количествах употреблять продукты с их высоким содержанием.
- Также степень выработки собственных антиоксидантов внутри организма у каждого человека различна.
- Клинические и экспериментальные исследования подтверждают благотворное воздействие антиоксидантов на сердечно-сосудистую систему.
- Длительное употребление всевозможных антиокислителей в профилактических целях заметно сокращает риск возникновения инсульта, инфаркта миокарда, гипертонических и ишемических болезней сердца.

Антиоксиданты оказывают профилактическое действие на организм.

- Об этом свидетельствуют эксперименты, где у пациентов заметно улучшилось не только кровообращение в мелких сосудах сетчатки, но и разгладилась кожа, также они стали реже болеть вирусными заболеваниями.
- Антиоксиданты также помогают организму понижать уровень повреждения тканей, ускорять процесс регенерации.
- Многие антиоксиданты могут использоваться для профилактики катаракты и терапии диабета, а также для усиления сопротивляемости организма к воздействию радиации и различных вредных факторов окружающей среды.
- Употребление антиоксидантов сможет частично восстанавливать слух, зрение, память, и способность концентрировать внимание. Одним из важных проявлений действия антиоксидантов является комплексное замедление старения организма

- Для поддержания правильной работы организма и обеспечения баланса между свободными радикалами и антиоксидантами требуется их регулярное поступление.
- Антиоксиданты также могут оказывать отрицательное действие на организм.
- Потребление таких напитков как какао, чёрный и мятный чай, понижает усвоение железа благодаря наличию в их составе полифенолов.
- По экспериментальным данным чёрный чай замедляет всасывание железа на 78–95%. Поэтому рекомендуется воздерживаться от употребления чёрного чая во время еды.

- Необходимо учитывать, что избыточное потребление антиокислителей может создать противоположный эффект они катализируют свободно-радикальные реакции.
- Причина в том, что антиокислитель сам становится свободным радикалом.
- Такие радикалы не опасны для организма в малом количестве. Однако когда этот показатель превышает норму, вклад в окисление становится весомым.
- К основным источникам антиокислителей относятся продукты питания и напитки на основе растительного сырья, включающие в себя такие биологически активные вещества как витамины, сахара, фенольные соединения, протеины, карбоновые и аминокислоты.

Классификация и источники фитохимических веществ

Фитохимическое вещество	Категория	Подкатегория	Продукты питания	
Каротиноиды	Каротин	α-каротин	Авокало, тыква, шпинат, морковь	
	Карогин	β-каротин	Красный перец, абрикосы, морковь, шпинат	
	Ликопин		Томаты, арбуз, грейпфрут	
	Лютеин		Капуста, шпинат	
Полифенолы		Антоцианы	Красное вино, тёмные сорта винограда, ягоды	
	Флавоноиды	Флавоны	Одивки, петрушка, сель- дерей	
		Флавонолы, кверцетин, рутин	Лук, чай, вино, яблоки, чеснок	
		Флавонолы, катехины	Яблоки, груши, вино, чай, шоколад	
		Флаваноны	Цитрусовые	
		Изофлавон	Бобовые	
	Феноло-кислота	Оксибензойная кислота, галловая кислота, эддаговая кислота, салициловая кислота, кофеиновая кислота	виноград	
	Другие	Капсайцин	Чилийский и сладкий пе- рец	
	фенольные соединения	Танины	Красное вино, чай виноград	

Таблица 2 — Содержание антиоксидантов в 100 г продуктов (Oxygen Radical Absorbance Capacity – мера измерения антиоксидантной активности)

Наименование	Значение ORAC		
Абрикосы свежие	1110		
Авокадо	1922		
Ананас свежий	385		
Апельсин	2103		
Арахис	3166		
Арбуз	142		
Арония	16062		
Артишок сырой	6552		
Бананы	795		
Базилик свежий	4805		
Базилик сушеный	61063		
Баклажаны свежие	932		
Бобы	799		
Бразильский орех	1419		
Брокколи свежая	3083		
Ваниль	122400		
Винный уксус	410		
Вишня	3747		

Виноград белый, зеленый	1018		
Виноград красный	1837		
Виноград черный	1746		
Голубика	4669		
Горох замороженный	600		
Горчица	29257		
Гранат свежий	4479		
Грейпфрут	1548		
Грецкий орех	13541		
Гриб белый, свежий	691		
Груша вяленая	9496		
Груша сырая	2201		
Земляника	4302		
Какао-порошок	55653		
Капуста свежая белокочанная	529		
Кардамон	2764		
Карри	48504		
Картофель сырой (с кожурой)	1098		
Кетчуп	578		
Кешью	1948		

Киви	862		
Клюква	9090		
Корица	131420		
Крыжовник	3332		
Кукуруза свежая	728		
Изюм	4188		
Имбирь свежий (корень)	5708		
Лимон	1346		
Лук свежий репчатый	913		
Майоран свежий	27297		
Малина свежая	5065		
Мандарины	1627		
Морковь свежая	436		
Нектарин	919		
Оливковое масло	372		
Огурцы свежие (с кожурой)	232		
Паприка	21932		
Перец белый	40700		
Перец красный	19671		
Перец черный	34053		
Перец сладкий	821		

Персики вяленые	4222		
Персики свежие	1922		
Редис свежий	1750		
Розмарин сушеный	165280		
Салат свежий (листья)	1532		
Свёкла	1776		
Сельдерей	552		
Сливы свежие	6100		
Соя	962		
Томаты свежие	546		
Тыква сырая	483		
Фисташки	7675		
Фундук	9645		
Хлеб цельнозерновой	2104		
Чай зеленый	520		
Чай черный	313		
Черника	5905		
Чернослив	8059		
Чеснок свежий	5708		
Шиповник	96150		
Шпинат свежий	1513		
Яблоки свежие с кожурой	2589		
Яблочный уксус	564		

Суммарное содержание водорастворимых антиоксидантов (САА) в сухих семенах и проростках (мг/100 г сухого вещества)

Культура	Суммарное содержание антиоксидантов			Отношение ССА в
	Сухие семена	Проростки на 2-е сутки	Проростки на 5-е сутки	проростках на 5-е сутки к ССА в сухих семенах
Пшеница	24	69	275	11,5
Рожь	29	102	320	11.0
Овес голозерный	34	65	334	9,8
Гречиха	182	203	383	2.1
Чечевица	42	72	90	2.1
Нут	84	190	503	5.9
Кунжут черный	291	150	490	1.7
Тыква голосеменная	33	65	333	10.1
Лен	56	201	526	9.4
Амарант	10	17	200	20.0
Расторопша пятнистая	235	334	896	3.8

- К продуктам животного происхождения с высоким содержанием антиоксидантов относятся красное мясо, птица, морепродукты и молочные продукты.
- Напитками, содержащими большое количество антиокислителей, являются красное вино, какао, а также зелёный и чёрный чай.

- Антиоксиданты внироко используются в пищевой промышленности.
- Процессы окисления значительно снижают качество продукции: разрушаются витамины, окисляется жир (в первую очередь ненасыщенные жирные кислоты), меняется цвет и прочность продуктов.
- Чтобы повысить сохранность продуктов, содержащих в своём составе витамины и жиры, вводят такие антиокислители как токоферолы (витамин Е), бутилокситолуол, додециловый и пропиловый эфиры галловой кислоты и др.

- Антиоксиданты делятся на две группы по характеру происхождения:
- природные;
- Синтетические.
- К синтетическим антиоксидантам, разрешенным к использованию в отдельных пищевых продуктах, относятся БОТ (бутилгидрокситолуол), БОА (бутилгидроксианизол), ТБГХ (трет-бутилгидрохинон) и токоферолы (витамин Е).
- Витамин Е принято считать натуральной добавкой, однако токоферол зачастую получают из ненатуральных источников.

- Использование экстрактов из растительного сырья способствует расширению ассортимента пищевых продуктов функционального назначения.
- К ним можно отнести бальзамические сиропы, молочные напитки, кисломолочные продукты и соусы, кисломолочные напитки на основе молочной сыворотки и другие.
- На сегодняшний день уже довольно-таки распространено использование антиоксидантов в мясных и молочных продуктах с целью продления срока хранения и разработки продуктов функционального назначения.
- Представляется возможным создавать продукты питания с более продолжительным периодом хранения, соблюдая при этом качественные показатели и безопасность товара.

- На предприятиях пищевой промышленности согласно действующим СанПиН 2.3.2.1293-03 «Гигиеническим требованиям по применению пищевых добавок» допускается введение как природных (дигидрокверцетин, токоферол и т.д.), так и синтетических компонентов (эфиры галловой кислоты, бутилгидроксианизол, третбутилгидрохинон), бутилгидрокситолуол).
- Антиоксиданты препятствуют потемнению фруктов и овощей во время обработки, тормозят окислительные процессы ферментов в безалкогольных напитках, вине и пиве. Предотвращая окислительную порчу, они способствуют увеличению срока годности полуфабрикатов, пищевого сырья и готовой продукции.

Масложировая отрасль

- Для маргаринов и спредов представляется возможным использовать такие антиоксиданты как токоферолы (Е 307 альфа, Е 308 гамма, Е 309 дельта), эфиры аскорбиновой кислоты (аскорбилпальмиат (Е 304) и аскорбилстеарат (Е 305), а также концентрат смеси токоферолов (Е 306).
- На сегодняшний день пристально рассматривается применение в производстве натуральных антиоксидантов, в частности экстрактов розмарина и зелёного чая.

- Экстракт римери содержит фенольные дитерпены, обладающие антиокислительными свойствами.
- В ходе экспериментов было установлено, что при введении экстракта в майонезы и дрессинги, даже спустя 25 недель хранения, перекисное число майонеза не поднялось выше допустимых значений.
- Экстракт розмарина используют в дрессингах, содержащих в своём составе специи и травы, к примеру, «1000 островов».
- В последнее время в качестве антиоксиданта особенно популярен экстракт зеленого чая, показавший высокую антиокислительную активность при использовании в соусах на майонезной основе и майонезах при столь низкой концентрации 100–200 г экстракта на 1 т продукта.

Молочная отрасль

- Молочные продукты являются комплексными системами, поэтому они заметно предрасположены к окислению, особенно это касается липидов.
- Окисление жировой составляющей молока осуществляется по цепной свободно-радикальной реакции и разделяется на два типа:
- энзиматическое окисление за счёт действия собственных ферментов;
- автоокисление благодаря влиянию света, тепла и ионов металлов переменной валентности.

- Молоко проявляет свои антиокислительные свойства благодаря содержанию в нем следующих антиоксидантов: ферментных (каталаза, пероксидаза, супероксиддисмутаза, и др.) и неферментных (витамины A,E,C, SH-соединения).
- Однако в процессе технологической обработки молока изменяются его физико-химические и биологические свойства.
- Например, липиды молока и кисломолочных продуктов при технологической обработке могут подвергаться свободнорадикальному окислению (СРО), что приводит к снижению их качества и биологической ценности.

- Так, образующиеся на начальной стадии окисления перекиси и гидроперекиси существенно не влияют на органолептические показатели молочных продуктов, но могут быть токсичны, способствуют разрушению жирорастворимых витаминов и полиненасыщенных жирных кислот.
- Вторичные продукты окисления (альдегиды и кетоны) придают продуктам соответствующие посторонние привкусы.
- Кроме того, потребление молочных продуктов с окисленными липидами может вызвать появление в организме патологических изменений, поэтому поиск средств защиты молочных продуктов от инициирования в них перекисного окисления важен не только для удлинения сроков хранения, но и для повышения биологической ценности продуктов.

- В молочной отрасли в качестве антиокислителей применяется аскорбиновая кислота и ее соли, соли галловой кислоты, токоферолы, лецитины синтетические антиоксиданты, однако больше всего внимания проявляется к биофлавоноиду дигидрокверцетину.
- Дигидрокверцетин (ДКВ) получают из древесины лиственницы Даурской или Сибирской. Экспериментально установлено, что ДКВ является безвредным и нетоксичным для человека компонентом, обладающим мощной биологической и антиокислительной активностью. ДКВ помогает укрепить сосуды, понизить скорость окисления молочного жира, а также он обладает Р-витаминной активностью. Использование ДКВ в молочной промышленности позволяет решить две задачи:

- продление срока годности продуктов благодаря антиокислительным свойствам;
- расширение продукции лечебного направления за счёт капилляропротекторной активности.
- В молочной промышленности ДКВ уже применяется в таких продуктах как йогурт, сметана, сгущенное молоко, плавленые сыры и др.
- В ходе исследований, проводимых во ВНИМИ, была подтверждена эффективность применения ДКВ с целью продления сроков хранения различных молочных продуктов.

Сроки годности продуктов с применением ДКВ

Продукт	Срок годности без антиоксиданта	Срок годности с применением ДКВ
Йогурт	7 дней	21 день
Сухое молоко	8 месяцев	2 года
Плавленые сыры	2 месяца	4 месяца
Сметана	21 день	45 суток
Молочно-растительные продукты	1 год	3 года
Мороженое		увеличен вдвое

- С целью продления сроков годности пищевых продуктов зачастую применяют ДКВ в количестве примерно 0,02% от массы жира, что позволяет увеличивать сроки годности молочных продуктов как минимум в 2–3 раза.
- Экспериментально установлено, что он имеет бактерицидные свойствами к одним из самых опасных для человека микроорганизмам: кишечная палочка, S.aureus, L.monocytogenes.
- В филиале Московского университета технологий и управления в городе Мелеузе успешно прошли исследования по получению пастеризованного молока с ДКВ со сроком хранения до 10 дней (без внесения ДКВ молоко хранилось до 5 дней).

По результатам проведённого исследования были сформулированы выводы:

- ДКВ не ухудшает органолептические показатели продуктов;
- применение ДКВ обеспечивает получение безопасных и качественных продуктов;
- в течение 10 дней повышение титруемой кислотности в образцах с ДКВ было менее интенсивным и находилось в пределах нормы;
- ДКВ не оказывает влияние на ход технологического процесса;
- введение ДКВ понижает интенсивность развития КМАФАнМ.

Количество ДКВ, применяемое в молочных продуктах

Тип молочного продукта	Количество вносимого ДКВ	
Йогурт с м.д.ж. 7,5 %	0,025 % на 100 г продукта	
Йогурт, кефир, выработанные из сте-	0,020 % от массы жира	
рилизованного молока с м.д.ж. 4 %		
Майонез с м.д.ж. до 50 %	0,250 % от массы продукта	
Молоко сгущенное	0,050 кг на 100 кг продукта	
Плавленый сыр	0,020 % от массы жира продукта	
Обогащенный молочный продукт	0,010 - 0,1% от массы продукта	
Сгушенное молоко	не более 1% от массы жира	
Сметана с м.д.ж. 15 %	0,025 % на 100г продукта	
Сливки	0,020 % от массы жира	
Сметана, сливки, йогурт, кефир из су-	0,055 г на 1 кг сухого цельного молока	
хого цельного молока с м.д.ж. 25 %	(a)	
Сливочное масло с м.д.ж. 82,2 %	0,025 % на 100 г продукта	
Сухое молоко	0,020 % от массы жира	
Сухое молоко	0,050 % на 100г продукта	
Сухое молоко с м.д.ж. 15 %	0,035 г на 1 кг продукта	
Сухое молоко с м.д.ж. 20 %	0,046 г на 1 кг продукта	
Сухое молоко с м.д.ж. 25 %	0,056 г на 1 кг продукта	
Творожный десерт с м.д.ж. 5,5 %	0,025 % на 100г продукта	
Ферментированные молочные десерты		

- Антиокислители можно добавлять в качестве концентрированных смесей сублимационной сушки (например: брусники, свеклы и черники), в йогурты и напитки из сыворотки.
- Критерием выбора данных концентратов служит присутствие в них витаминов, флавоноидов и антоцианов, которые не разрушаются после сублимационной сушки.

- На молочном комбинате «Воронежский» была создана технология обогащённого творога с применением комплекса пищевых волокон «СтейдМилк В-о1» и антиоксиданта Origanox WS («Frutarom») на базе душицы обыкновенной.
- Подобранный антиоксидант дешёвый, обладает хорошей сопротивляемостью к высоким температурам и антибактериальной активностью, создаёт и обеспечивает синергизм с антибактериальными компонентами, а также замедляет окисление.
- Розмариновая кислота главный действующий компонент в используемом антиоксиданте.

- Для изучения были определены концентрации антиокислителя 0,01–0,05%, а контрольный образец оценивался без него.
- Выработка творога осуществлялась кислотным способом, причём добавление антиокислителя проводилось в потоке в нормализованную смесь.
- Получены данные, по которым при температуре 4, 6,
 10 °C в образцах с применением Origanox WS не изменяются начальные характеристики консистенции, запаха, цвета и вкуса до 30 дней.
- При этом исследуемые образцы без Origanox WS утрачивают потребительские свойства спустя 10 дней.
- Оптимальное количество введения антиокислителя
 Origanox составляет 0,03 %.

 По результатам последних исследований, проводимых на крысах, было изучено, что ДКВ в комбинации с арабиногалактоном в составе творожной сыворотки значительно понижает уровень холестерина и глюкозы в крови.

 На кафедре прикладной биотехнологии Университета ИТМО проведены исследования по созданию десертной продукции с использованием мякоти арбуза, которая содержит ликопин, обладающий антиокислительными характеристиками.

- За последние годы создан ряд продуктов питания с добавлением семян и листье амаранта, обладающих мощной биологической ценностью, антиокислительной и пребиотической активностью.
- Флавоноиды амаранта способны уменьшить окисление липидов, разрушение аскорбиновой кислоты, а также накопление молочной кислоты в пробиотических кисломолочных продуктах в процессе хранения.
- Один из наиболее сильных по биологическим свойствам образец зеленых листьев это Amaranthus cruentus.
- Выяснено, что максимальное извлечение биологически активных компонентов из листовой части растения осуществляется при температуре экстрагирования 43 °С с выдержкой 40 мин, соотношение твердой и жидкой фаз должно быть 1:8.

Мясная отрасль

- Животные жиры в процессе технологической переработки и во время продолжительного хранения подвержены окислению кислородом.
- В конечном счёте это ведёт к снижению пищевой ценности мяса, так как разрушаются жирорастворимые витамины и эссенциальные ПНЖК, а также возникают токсичные вещества.
- Ко всему прочему портится внешний вид и качество товара.
- Так, например, шпик приобретает жёлтый окрас, отвратительный запах и вкус, а колбасы, в которых содержатся желтоватые кусочки шпика, подвергаются браку.
- С целью предотвращения окисления липидов используют антиоксиданты.

- С увеличением дозы введения антиоксидантов в продукты повышается стойкость последних к окислению и, как следствие, увеличивается срок их хранения.
- Однако не желательно использовать слишком высокие концентрации антиоксидантов (свыше о,о2%) по технологическим и гигиеническим соображениям.
- Если вносить полифосфат в мышечную ткань при мокром посоле, то он будет больше проявлять свои противоокислительные свойства, нежели если его добавлять в измельченную говядину.

- Антиокислители вводятся либо в корм убойных животных для того чтобы понизить процессы окисления в мясе, а не в самом корме, либо в процессе создания мясного продукта.
- Введение антиокислителей в корм более целесообразно, так как они равномернее распределяются в ткани мяса, нежели, если вносить их после убоя, что приводит к нарушению структуры, так как антиокислители представляется возможным добавлять лишь в переработанный продукт.
- Мощным антиокислителем животного происхождения является хитозан, который возможно использовать для мясных продуктов.

- В качестве критерия для подбора специй к использованию в мясной промышленности используют их вкусоароматическую сочетаемость с продуктами из мяса.
- Поэтому зачастую в мясной промышленности применяются дезодорированные маслосмоты и экстракты трав и специй.
- Для продления срока хранения замороженных сырых колбас и котлет производители вносят в их состав дезодорированные экстракты розмарина.
- На антиокислительную активность может оказывать влияние техника введения добавки и срок хранения, потому что разные антиоксиданты проявляют свою активность на разных сроках хранения.

- На данный момент изучено достаточно много способов уменьшения окислительной порчи жиров в мясных продуктах.
- Каждый способ выбирается в зависимости от конкретных факторов, например, вида животного, типа ткани, способа обработки, класса продукта, условий и длительности хранения и т.д.
- Широко известными антиоксидантами являются аскорбиновая кислота (Е 300) и аскорбат натрия (Е 301).

- Бутилоксианизол один из первых компонентов, который стали использовать с целью снижения окисления животных топленых жиров и соленого шпика.
- Бутилгидрокситолуол (Е 321) применяют в жирах животного происхождения с длительным сроком годности. Также эти добавки применяются в производстве полукопченых и копченых колбас, в выработке свежемороженой, копченой, сушеной и вяленой рыбы.
- Для повышения срока действия и активности антиоксидантов зачастую их вводят в продукт не по отдельности, а в комплексе благодаря их синергетическому действию.

- Изучена противоокислительная способность некоторых трав, специй и их экстрактов, в частности экстракта розмарина, толокнянки, зверобоя, коры дуба, ДКВ и т.д.
- Учёные убеждены, что противоокислительный эффект растительных экстрактов такой же, либо мощнее, чем у синтетических антиоксидантов, например бутилгидроксианизола и бутилгидрокситолуола, и превышает активность токоферолов.

- Большинство синтетических антиоксидантов зачастую являются аллергенами, поэтому дозировки их введения в продукты строго контролируются.
- В особенности это касается, например, количества лимочной кислоты и цитратов в пищевых продуктах.
- К примеру, у детей с непереносимостью лактозы может возникнуть аллергическая реакция на лактат натрия.
- Превышение концентрации ортофосфорной кислоты способствует изменению кальциево-фосфорного баланса в организме, а также оказывает пагубное воздействие на желудочно-кишечный тракт.
- Фосфор способен выводить кальций из организма, вызывая рахит.

- К натуральным антиокислителям можно отнести:
- токоферолы, применяемые в составе эмульсий в количествах до 0,3%;
- аскорбиновая кислота (пределы добавления 0,01 0,1 %);
- пропилгаллат (в диапазоне от 0,005 до 0,02 %);
- соевое масло с большим содержанием токоферола (пределы применения 0,1 – 0,6 %);
- розмарин, кардамон, кориандр, горчица, красный перец и экстракты, полученные на их основе (дозы внесения от 0,03 до 0,2%).

- Лимонная кислота и её эфиры, натриевые и калиевые соли, а также винная кислота (в количествах 0,05 0,02 %) проявляют синергетические свойства.
- Подобными характеристиками обладают моноизопропилцитрат (0,02 % к общей массе сырья) и фосфорная кислота (0,01 %).
- Антиоксидантными свойствами могут обладать щелочные фосфаты.

- Для создания насыщенного цвета в пищевой промышленности применяют аскорбиновую кислоту, изоаскорбинат, изоаскорбинат.
- Аскорбиновая кислота и аскорбинат натрия используют для быстрого создания насыщенного цвета мяса, улучшения внешнего вида, увеличения устойчивости цвета в процессе хранения, а также уменьшения количества нитритов в конечном продукте в пределах от 22 до 38 %.
- Это антиокислители, ко всему прочему, повышают антибактериологическую активность нитрита, подавляют возникновение нитрозоаминов в продукте на 32 – 35 %.
- Дозировка введения аскорбиновой кислоты колеблется в пределах 0,02 – 0,05 % от массы сырья. Изоаскорбинат натрия оказывает подобное действие.

- Использование вышеперечисленных антиоксидантов позволяет создавать экологически безопасные готовые продукты.
- Нитрит натрия вносят в виде растворов в количестве, не превышающем 2,5 %; при этом в шприцовочных рассолах его концентрация колеблется от 0,02 до 0,1%.
- Нитрит натрия используется в производстве продуктов питания с целью создания нитрозопигментов, корректировки органолептических характеристик, защиты жиров от окисления и подавления развития микроорганизмов, токсигенных плесеней и синтезирования ими токсинов.

- В курином жире присутствует достаточно много эссенциальных жирных кислот: приблизительно на 80 % он состоит из олеиновой, линолевой и пальмитиновой кислот; при чём суммарное количество ненасыщенных кислот достигает 70 %.
- В ходе термической обработки такие кислоты превращаются в перекиси, карбонильные соединения, низкомолекулярные кислоты, оксикислоты и др.
- О Всё это уменьшает пищевую ценность мяса.

- Антиокислители фенольной группы способствуют снижению окисления жиров даже стерилизованной продукции, так как научно доказано, что натуральные антиокислители уменьшают окисление жиров в мясе кур в процессе высокотемпературной обработки.
- Для улучшения товарных характеристик консервированного мяса птицы применяется экстракт из плодов коричневого шиповника или листа чёрной смородины, которые также обладают противоокислительными свойствами.

- Проведены исследования по применению при производстве паштетов кедрового орех (до 20 % от массы смеси), источника токоферолов.
- Получены данные, подтверждающие антирадикальные свойства добавки. В то же время методом хемилюминесценции показано, что введение в состав мясного паштета селенита натрия (20 мкг/100 г продукта) не влияет на величины показателей, характеризующих процессы генерации активных кислородных метаболитов в субстрате.
- Селен является антиоксидантом непрямого действия.
 Активным является не сам селен, а селенопротеиды, синтезируемые в организме. По-видимому, содержащийся в паштетах селен не способен проявлять свои антиоксидантные свойства в системе in vitro.

- Из всего высказанного можно сделать вывод, что антиокислители имеют широкое применение на предприятиях пищевой отрасли.
- Их антиокислительные свойства позволяют продлевать сроки хранения, а также обогащать состав продуктов функционального назначения.