Programmable logic and FPGA

CPU Architecture

Objectives

- What is a programmable logic
- What is an FPGA
 - Structure
 - Special functions
 - Comparison and Usages
- Altera Cyclone II 20 FPGA
- Design Flow

Semiconductor Chips

ASICs

Application Specific Integrated Circuits

Microprocessor s

Microcontrollers

FPGA & CPLD

Programmable logic

- An integrated circuit that can be programmed/reprogrammed with a digital logic of a curtain level.
- Started at late 70s and constantly growing
- Now available of up to approximately 700K
 Flip-Flops in a single chip.

Advantages

- Short Development time
- Reconfigurable
- Saves board space
- Flexible to changes
- No need for ASIC expensive design and production
- Fast time to market
- Bugs can be fixed easily
- Of the shelf solutions are available

How it Began: PLA

- Programmable Logic Array
- First programmable device
- 2-level and-or structure
- One time programmable

SPLD - CPLD

- Simple Programmable logic device
 - Single AND Level
 - Flip-Flops and feedbacks
- Complex Programmable logic device
 - Several PLDs Stacked together

FPGA - Field Programmable Gate Array

- Programmable logic blocks (Logic Element "LE") Implement combinatorial and sequential logic. Based on LUT and DFF.
- Programmable I/O blocks
 Configurable I/Os for external connections supports various voltages and tri-states.
- Programmable interconnect
 Wires to connect inputs, outputs and logic blocks.
 - clocks
 - short distance local connections
 - long distance connections across chip

Configuring LUT

- LUT is a RAM with data width of 1bit.
- The contents are programmed at power up

Required Function

Truth Table

а	b	С	у
0	0	0	1
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	1

Programmed LUT

Special FPGA functions

- Internal SRAM
- Embedded Multipliers and DSP blocks
- Embedded logic analyzer
- Embedded CPUs
- High speed I/O (~10GHz)
- DDR/DDRIII/DDRIII SDRAM interfaces
- PLLs

Comparison

Processors

Instruction Flexibility 90% Area Overhead (Cache, Predictions)

FPGA

Device-wide flexibility 99% Area Overhead (Configuration)

ASIC

No Flexibility 20% Area Overhead (Testing)

Usages

- Digital designs where ASIC is not commercial
- Reconfigurable systems
- Upgradeable systems
- ASIC prototyping and emulation
- Education

Manufacturers

- Xilinx
- Altera
- Lattice
- Actel

We will work with Altera FPGAs

Cyclone II - 20

- 18,752 LEs
- 52 M4K RAM blocks
- 240K total RAM bits
- 52 9x9 embedded multipliers
- 4 PLLs
- 16 Clock networks
- 315 user I/O pins
- SRAM Based volatile configuration

Cyclone II Internals

Cyclone II Logic Array

 Build of LABs (logic array blocks) and reconfigurable interconnect

Cyclone II Logic Array Block (LAB)

- 16 LEs
- Local Interconnect
- LE carry chains
- Register chains
- LAB Control Signals
 - 2 CLK
 - 2 CLK ENA
 - 2 ACLR
 - 1 SCLR
 - 1 SLOAD

Cyclone II Logic Element (LE)

LE in Normal Mode

 Suitable for general logic applications and combinational functions.

LE in Arithmetic Mode

 Ideal for implementing adders, counters, accumulators, and comparators.

Cyclone II I/O Features

- In/Out/Tri-state
- Different Voltages and I/O Standards
- Flip-flop option
- Pull-up resistors
- DDR interface
- Series resistors
- Bus keeper
- Drive strength control
- Slew rate control
- Single ended/differential

Cyclone II I/O Buffer

Cyclone II Clocking

- 16 Global Clocks
- 4 PLLs

Cyclone II PLL

- 3 Outputs
- Clock Division
- Clock Multiplication
- Phase shift

Memory

- True Dual port RAM/ROM with dual clock
- Variable data width
 - 4K×1, 2K×2, 1K×4, 512×8, 512×9, 256×16, 256×18
 - 128×32, 128×36 (not available in true dual-port mode)
- Input data and address are registered
 - 1 Clock Write latency
- Output data can be registered
 - Read latency of 1 or 2 clocks
- Byte Enable

Cyclone II Memory Structure

Cyclone II Multipliers

- 18x18 or 2 9x9 modes
- Up to 250MHz Performance

Delays and maximal frequency

- Gate delay Delay of logic element
- DFF delay tco (tsu Very small)
- Interconnect delay

Maximum Frequency is the fastest speed a circuit containing flip-flops can operate.

Design flow

Design Rules

	ASIC	FPGA
Adder	CLA	Ripple Carry
Latch	Commonly used	Not Recommended
Gated clock	Commonly used	Unacceptable
Tri-State	Commonly used	Only in I/O
Async RAM	Commonly used	Only Small

Any questions?