
# Процесс образования женских половых клеток – оогенез

| Протекает в зародыше до |
|-------------------------|
| сформирования гонад, т. |
| е. до определения       |
| направления развития    |
| гоноцитов.              |
|                         |
|                         |
| Протекает внутри гонад  |
|                         |



Расположение гоноцитов у представителей различных классов позвоночных

Первичные половые клетки (гоноциты) у человека впервые появляются в стенке желточного мешка. Отсюда они мигрируют по кровеносным сосудам и внедряются в половые шнуры.



#### Периодизация оогенеза

Оогенез проходит в три фазы:

- 1. Период размножения: Митотическое размножение оогоний происходит <u>ещё в эмбриональный период</u> (внутриутробно).
- 2. Период роста. Ооциты первого порядка проходят профазу первого деления мейоза до стадии диплотены и на время мейоз блокируется. Состоит из двух фаз: малый рост проходит до полового созревания, большой рост после полового созревания.
- 3. Период созревания начинается непосредственно перед овуляцией ооцита. С наступлением полового созревания группы ооцитов периодически возобновляют мейоз. Завершается первое деление мейоза, образуется ооцит второго порядка и первое полярное тельце. Второе деление проходит до метафазы и мейоз вновь блокируется до оплодотворения.

#### Период размножения

- а) Данная стадия происходит во внутриутробном периоде: на 3-м 4-м месяце развития.
- б) При этом число клеток увеличивается в **2**<sup>k</sup> раз, где k число митотических циклов.

### **Период роста** период малого роста

Период малого роста ооцита I происходит тоже до рождения и некоторое время после рождения. Протекают следующие стадии профазы мейоза (прелептотена, лептотена, зиготена, пахитена, неполная диплотена.

В итоге, в ооцитах I примордиальных фолликулов хромосомы удвоены, опарно конъюгированы, образуют хиазмы.

#### Период покоя

На стадии диплотены ооциты I вступают в длительную фазу покоя. Она продолжается до периода большого роста (может начинаться до полового созревания (рано обрывается), а также в течение всего репродуктивного периода жизни женщины). Т.е., ооциты I могут покоиться на стадии диплотены в течение нескольких десятилетий.

Оогонии (2n, 2c) х 2<sup>k</sup> Оогонии (2n, 2c)

Ранний ооцит I
(2n, 2c)
Ооцит I,
стадия диплотены
(4n, 2c)
(в составе
примордиального
фолликула)

Ооцит I, диплотена, (2n, 4c) Ооцит I, диплотена, (2n, 4c)

## Продолжение мейоза (период большого роста)

Данный этап оогенеза инициируется фолликулостимулирующим гормоном (ФСГ) гипофиза и происходит в созревающем фолликуле, который при нормальном развитии последовательно становится первичным, вторичным и третичным. Вначале длительное время ооцит 1 растёт: значительно увеличивается в размере и накапливает в цитоплазме питательные вещества. Завершается профаза мейоза - стадии диплотена и диакинез. В самом конце существования фолликула быстро проходят остальные стадии 1-го деления мейоза: метафаза, анафаза и телофаза.

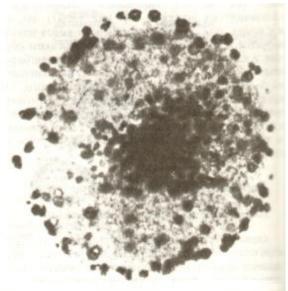
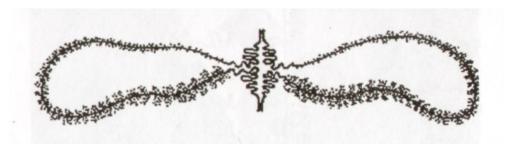




Рис. 11.9. Ядро, изодированное из ооцита *Хепория* Гемноокрашенные пятна представляют собой экстрахромосомные ядрышки. (Из Brown, Dawid, 1988—ротография с дюбезного разрешения D. D. Brown.)



Хромосомы типа ламповых щеток

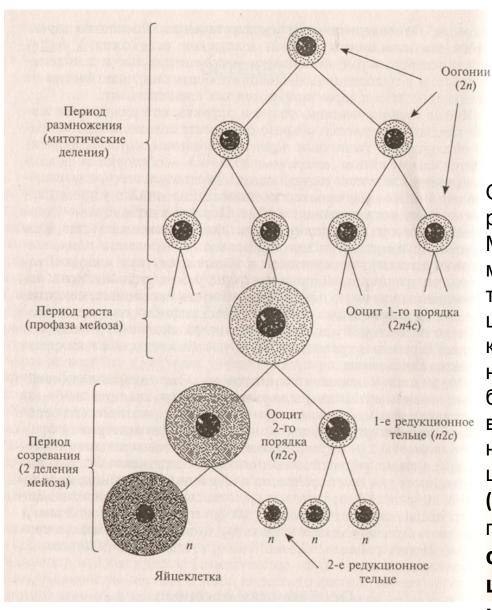
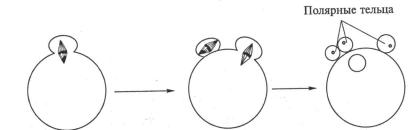




Схема оогенеза



Метафаза II

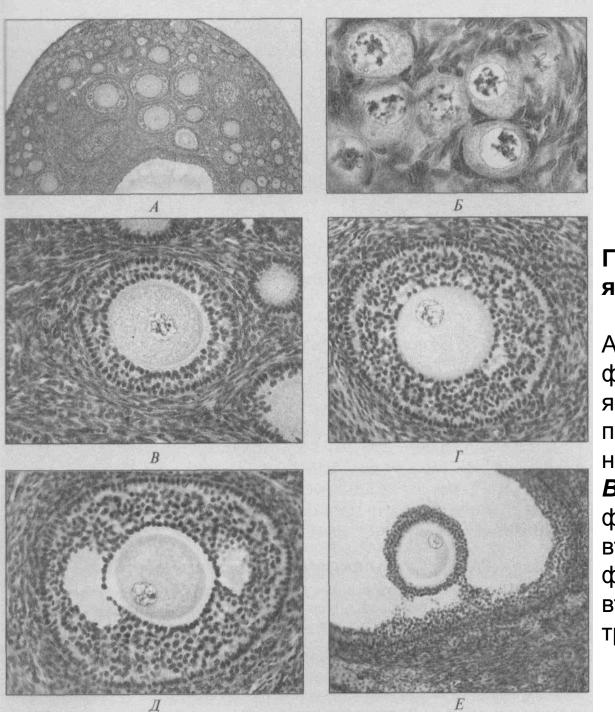
Метафаза I

Женский

пронуклеус

мейоз Оогенный отличается расположением метафазной пластинки. Метафазное веретено первичного ооцита мигрирует на периферию клетки. Во время телофазы одна из клеток почти не содержит цитоплазмы, а другая получает почти все Меньшая компоненты клетки. кпетка называется первым полярным тельцем, а большая — **вторичным ооцитом.** Во время второго деления вновь происходит неравный Большая цитокинез. часть цитоплазмы остается в зрелой яйцеклетке **(яйце)**, а второе полярное тельце -Оогенный мейоз ядро. гаплоидное объема сохранению СЛУЖИТ цитоплазмы ооцита в одной клетке, допуская He ee равного распределения между четырьмя клетками.

#### Фолликулогенез


Оогенез протекает при взаимодействии оогенных клеток с эпителием в составе фолликулов. Структуры, состоящие из **ооцит**а и окружающего **слоя фолликулярных клеток**, называются **фолликулами**.

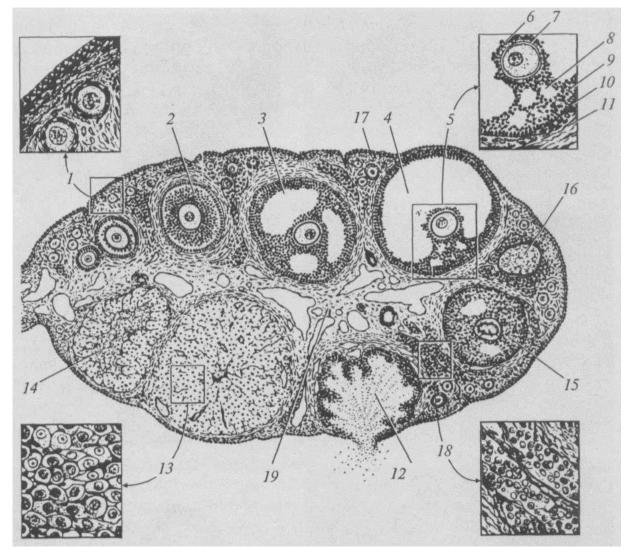
Ооцит первого порядка, окруженный одним слоем **плоских** фолликулярных клеток, называется **примордиальным фолликулом**.

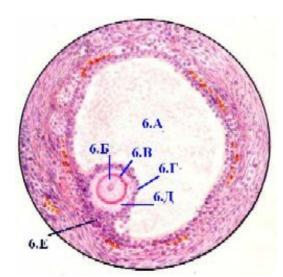
Ооцит первого порядка, окруженный одним-двумя слоями кубических или цилиндрических фолликулярных клеток и блестящей оболочкой, называется первичный фолликул. Вокруг фолликула образуется наружная оболочка из элементов стромы – тека (внутренний клеточный слой – theca interna, наружный фиброзный - theca externa).

Ооцит первого порядка, окруженный несколькими слоями фолликулярных клеток, между которыми формируется антрум (полость), заполненный смесью белков, гормонов и других молекул, называется вторичным фолликулом.

Зрелый **третичный фолликул,** или Граафов пузырек, достигает 1-2.5 см в диаметре, в полость пузырька вдается холмик из фолликулярных клеток, внутри которого находится яйцеклетка, в котором завершается первое деление мейоза перед овуляцией.



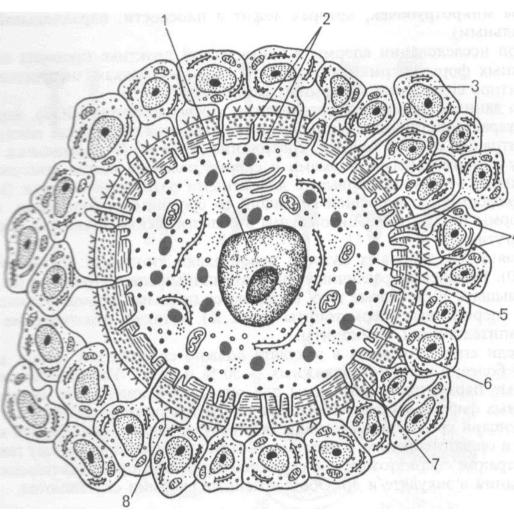

#### Гистологический срез яичника кролика:


А - общий вид: расположение фолликулов в корковой зоне яичника; **Б** — группа примордиальных фолликулов на периферии корковой зоны; **В** — первичный многослойный фолликул; Г - ранний вторичный фолликул: начало формирования лакун; вторичный фолликул; **Е** — третичный фолликул

Разрыв стенки фолликула и освобождение из него яйцеклетки называется **овуляцией**.

Клеточная масса, оставшаяся в фолликуле, под влиянием **ЛГ** становится **желтым телом** (временным эндокринным органом). Если оплодотворение не произошло, желтое тело дегенерирует и становится белым телом.

Большинство фолликулов проходят тот или иной путь, ведущий к созреванию, а затем дегенерируют. Этот процесс называется **атрезия** фолликулов, а дегенерирующие фолликулы называют **атретическими**.






Третичный фолликул

Схема строения млекопитающих

яичника



Яйцеклетка. 1 - ядро, 2-3 - клетки фолликулярного эпителия (corona radiata). 4 - zona pellucida. 5 - 6 -желточные гранулы

Яйцо человека имеет диаметр около 130 мкм. Содержит трофические включения (желточные гранулы); аппарат синтеза белка (мРНК, тРНК, рибосомы, ЭПС, АГ), морфогенетические факторы, митохондрии.

По периферии - кортикальный слой, содержащий актин и кортикальные гранулы. Нет клеточного центра.

Ядро яйца находится на стадии метафазы II, гаплоидное, но каждая хромосома состоит из двух хроматид.

Оболочки включают плазмалемму, прозрачную оболочку zona pellucida и слой клеток лучистого венца corona radiata.

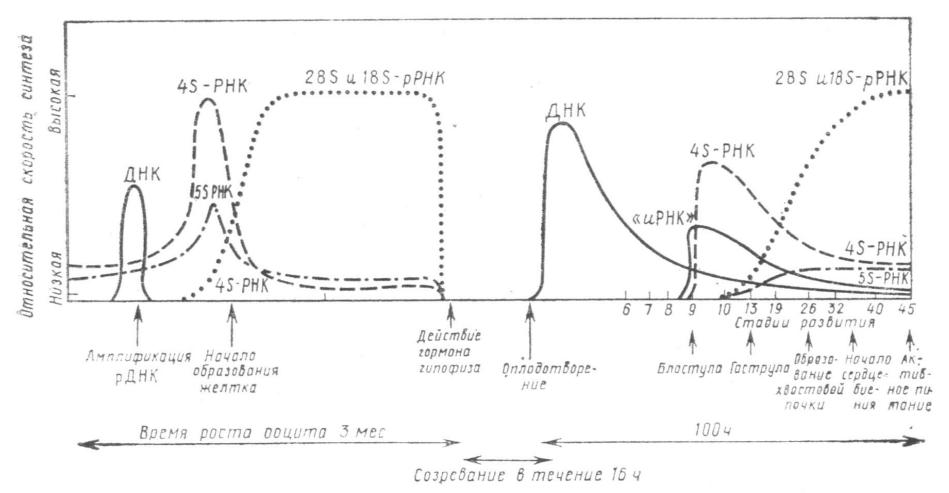
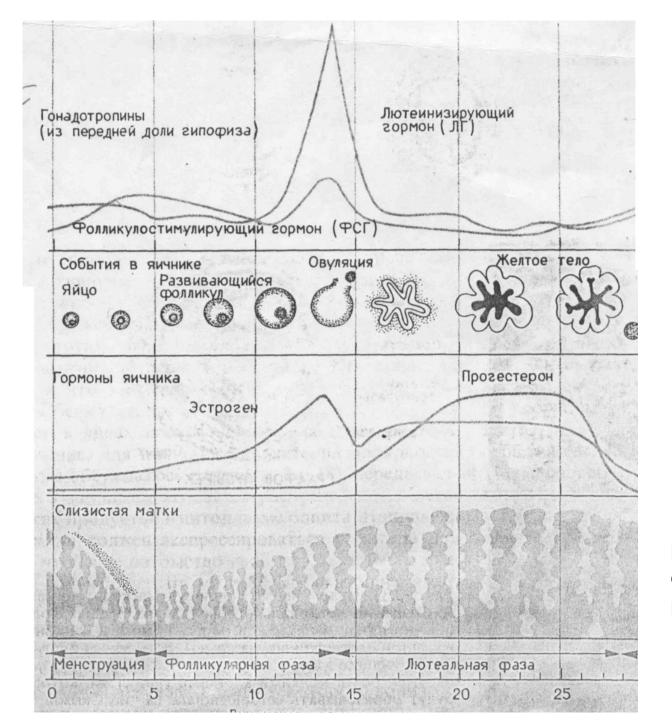
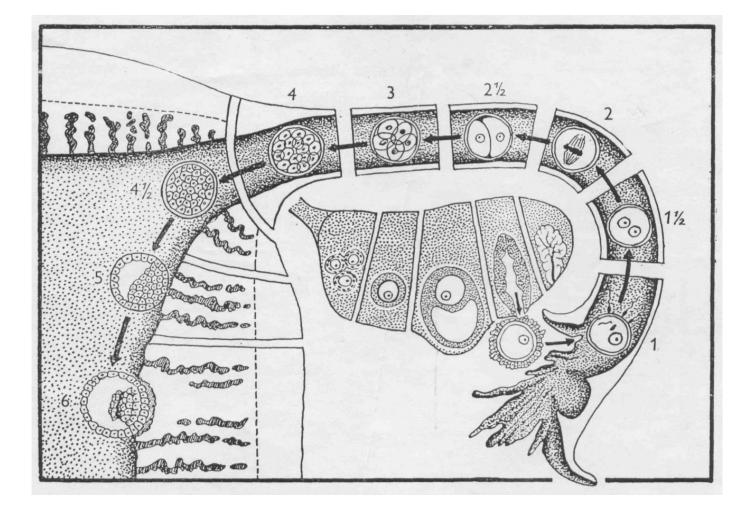




Рис. 58. Относительные скорости синтеза нуклеиновых кислот в ходе развития амфибий (по Дж. Гердону, 1974). Фракция 4S-РНК содержит в основном тРНК, фракция иРНК — гяРНК

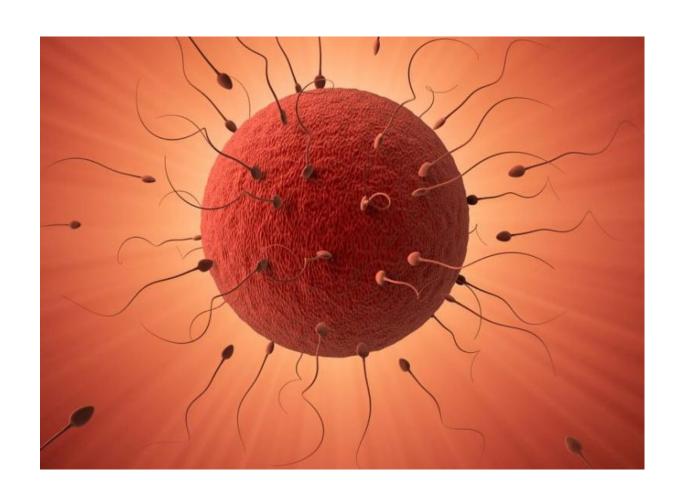
Периодический цикл в созревании и выделении яйцеклетки, завершающийся выделением из матки крови и клеточного дебриса, называется овариально-менструальным циклом. Цикл представляет собой интеграцию 1) овариального цикла, связанного с созреванием и выделением ооцита и 2) маточного цикла, функция которого заключается в обеспечении необходимых условий для имплантации бластоцисты.


Все эти функции интегрированы посредством гормонов гипоталамуса, гипофиза и яичника.



Гормональная регуляция овариального цикла

## Особенности овогенеза по сравнению со сперматогенезом:


- отсутствие фазы формирования;
- протекание фазы размножения во внутриутробном периоде;
- очень длительная фаза роста;
- образование при созревании неодинаковых клеток;
- завершение вне гонады и лишь при оплодотворении;
- гибель большинства клеток, вступивших в этот процесс;
- выраженная цикличность
- прекращение после менопаузы с полным исчезновением половых клеток.



Схематическое изображение созревания фолликулов, овуляции, оплодотворения яйце-вой клетки в яйцеводе, дробления яйца, перемещение его в полость матки и имплантация (по Гамильтону, Бойду и Моссману).

1 — оплодотворенная яйцеклетка, 2 — первое дробление, 3 — стадия пяти бластомеров, 4 — морула, 5 — бластоциста, 6 — прививающаяся бластоциста; начало имплантации. Числа одновременно означают дни с момента оплодотворения.

**Оплодотворение** - процесс слияния двух половых клеток (гамет) друг с другом, в результате чего возникает новая особь, одноклеточный диплоидный организм - зигота.

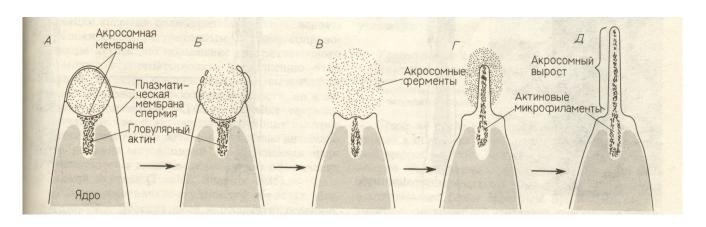


Оплодотворение осуществляет две разные функции: половую (комбинирование генов двух родителей) репродуктивную (создание нового организма)

Оплодотворение сводится к четырем основным процессам:

- 1. Контакт спермия с яйцом и их взаимное узнавание. Это этап качественного контроля. Спермий и яйцо должны принадлежать к одному и тому же виду.
- 2. Регуляция проникновения спермия в яйцо. Это этап количественного контроля. Только один спермий должен оплодотворить яйцо.
  - 3. Слияние генетического материала спермия и яйца.
  - 4. Активация метаболизма яйца.

#### Дистантные взаимодействия


#### видоспецифическое привлечение спермиев

Видоспецифическая активация

(выражено у животных с наружным

оплодотворением) **Капацитация** - приобретение спермиями оплодотворяющей способности под действием секрета женских половых путей (изменение структуры липидов клеточной мембраны спермия и удаление гликолипидов с поверхности клеточной мембраны).

#### Контактные Акросом взамение и в при в акросомной гранулы



#### Контактные



Рис. 2.22. Мембранный потенциал в яйце морского ежа до и после оплодотворения. До добавления спермы разность потенциалов по обе стороны плазматической мембраны составляла около — 70 мВ (содержимое клетки имеет больший отрицательный заряд, чем ее окружение). Когда спермий соединяется с яйцом, за 0,1 с потенциал сдвигается в направлении положительных величин. (По Jaffe, 1980.)



**Кортикальная реакция**: экзоцитоз кортикальных гранул морского ежа при оплодотворении

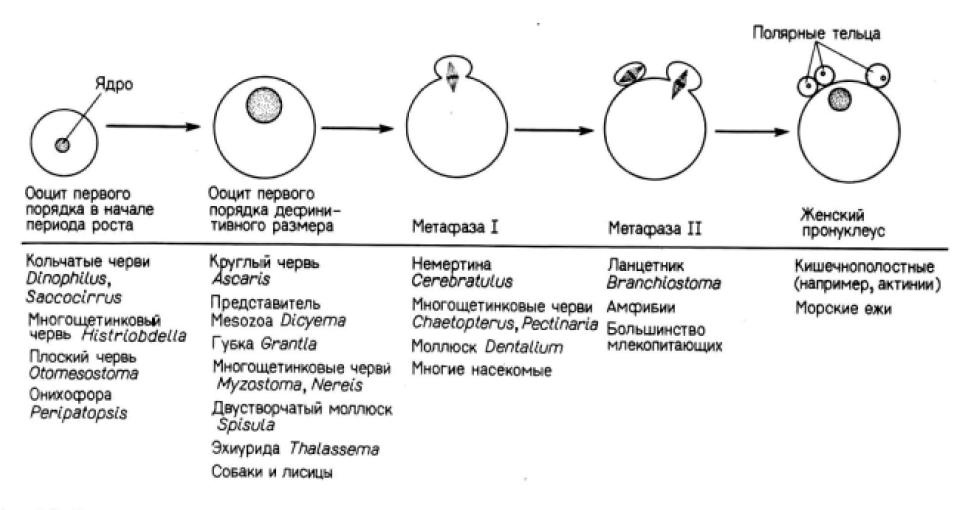
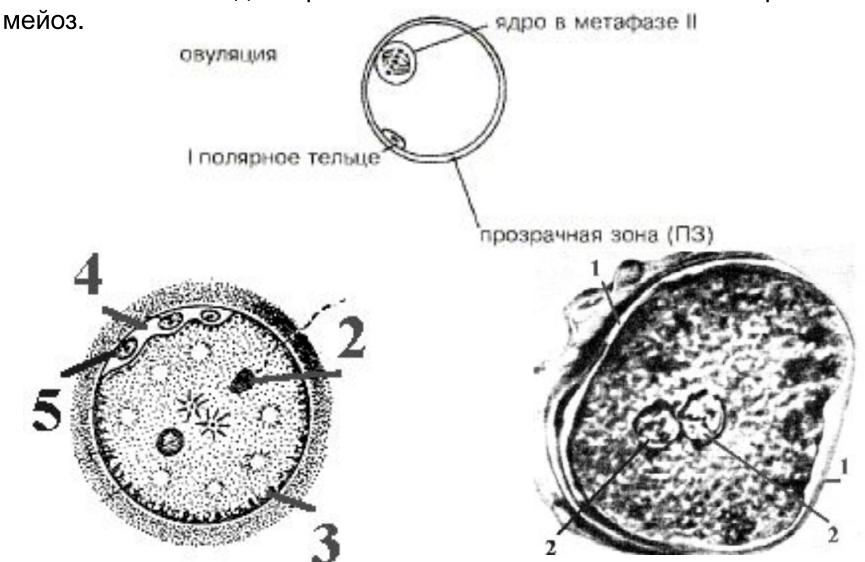




Рис. 2.5. Стадии созревания, на которых находятся яйца, когда в них проникает спермий, у разных животных..(По Austin, 1965.)

#### Слияние генетического материала

Овуляция происходит на стадии метафазы второго деления мейоза. Только после оплодотворения блок мейоза снимается и завершается



### **Активация метаболизма яйца**

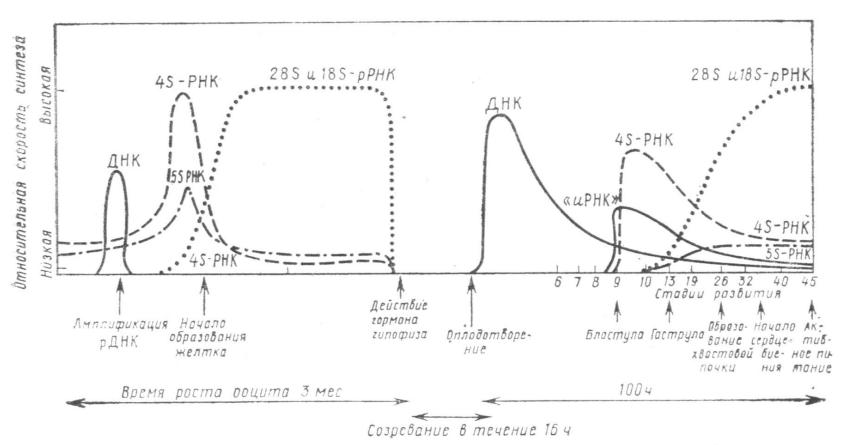



Рис. 58. Относительные скорости синтеза нуклеиновых кислот в ходе развития амфибий (по Дж. Гердону, 1974). Фракция 4S-РНК содержит в основном тРНК, фракция иРНК — гяРНК

## Преобразование цитоплазмы яйца

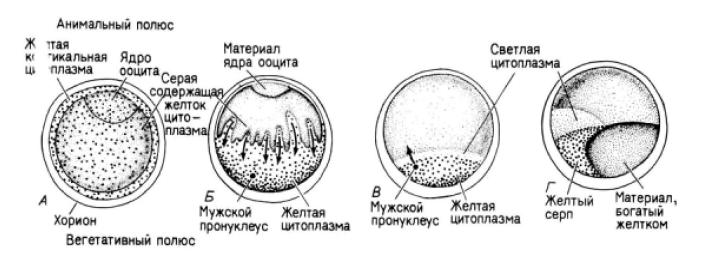



Рис. 2.36. Перемещение цитоплазматических масс в яйце асцидии Styela partita. А. До оплодотворения желтая кортикальная цитоплазма окружает серую цитоплазму, содержащую желток. Б. В момент проникновения спермия желтая кортикальная цитоплазма и светлая цитоплазма из области, где произошло разрушение ядра ооцита, перетекают в вегетативное полушарие по направлению к спермию. В. Когда мужской пронуклеус мигрирует в анимальном направлении к женскому пронуклеусу, желтая цитоплазма и светлая цитоплазма перемещаются вместе с ним. Г. Окончательное положение светлой цитоплазмы и желтой цитоплазмы. Оно соответствует областям, в которых будут расположены клетки, дающие начало соответственно мезенхиме и мышцам. (По Duechar, 1975.)

Ооплазматическая сегрегация – разделение, расслоение различных составных частей цитоплазмы яйцеклетки, которая обычно происходит в момент оплодотворения.

#### Партеногенез

Развитие без оплодотворения называется партеногенез. При партеногенезе развитие идет при участии только женского пронуклеуса (некоторые ракообразные и коловратки, некоторые чешуекрылые, пресмыкающиеся).

**Гиногенез** – разновидность партеногенеза, происходящего в результате незавершенного оплодотворения. Т.е. оплодотворение играет роль агента, активирующего яйцо, но мужской пронуклеус в нем не участвует.

**Андрогенез** – явление, противоположное партеногенезу. В этом случае яйцеклетка развивается только с участием мужского ядра (табак, кукуруза, шелкопряд).

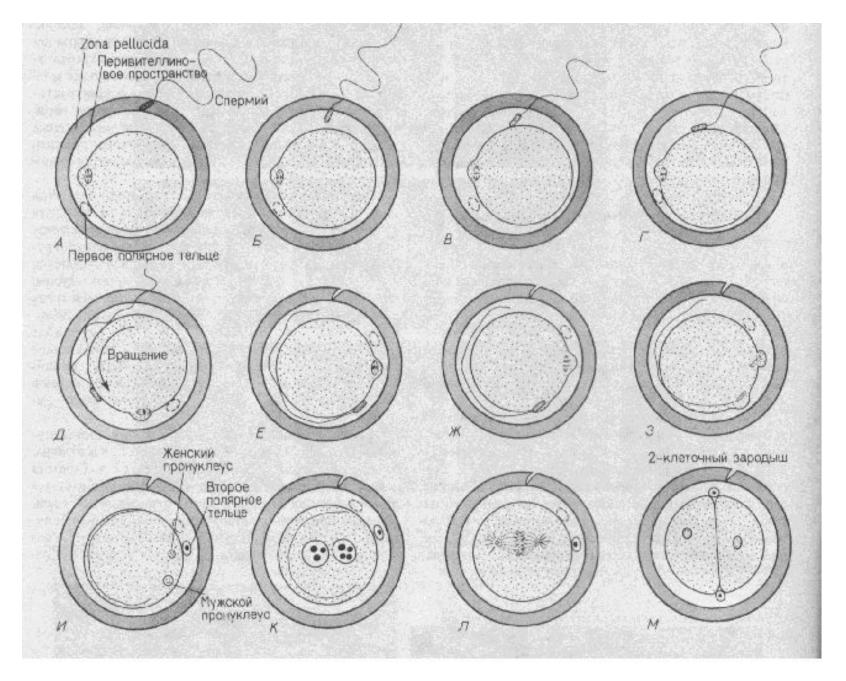



Схема процесса оплодотворения у млекопитающего