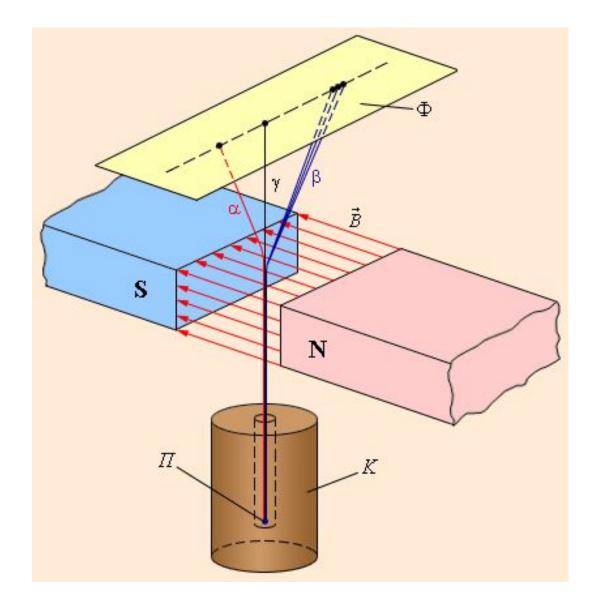

РАДИОАКТИВНОСТЬ

Радиоактивность

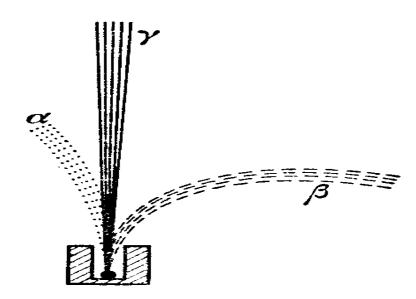
Радиоактивностью

называют самопроизвольное превращение одного

химического элемента в изотоп другого элемента, сопровождающееся испус- канием элементарных частиц или излучения.



Нарушение ядерного равновесия в ядре, приводящие к радиоактивному распаду.


Анализируя проникающую способность радиоактивного излучения урана, Э. Резерфорд обнаружил две составляющие этого излучения:

- •менее проникающую, названную α-излучением, и
- •более проникающую, названную **β**-излучением.

Третья составляющая урановой радиации, самая проникающая из всех, была открыта в 1900 году П. Виллардом и названа по аналогии с резерфордовским рядом у-излучением. Резерфорд и его сотрудники показали, что радиоактивность связана с распадом атомов (значительно позже стало ясно, что речь идет о распаде атомных ядер), сопровождающимся выбросом из них определенного типа излучений.

Радиоактивное излучение в магнитном поле

- •а -излучение тяжелые положительно заряженные частицы, движущиеся со скоростью около 10^9 см/сек и поглощающиеся слоем алюминия в несколько микрон. Впоследствии методом спектрального анализа было показано, что этими частицам He являются ядра гелия .
- •β -излучение легкие, отрицательно заряженные частицыэлектроны движущиеся со скоростью, близкой к скорости света, и поглощаемые слоем алюминия толщиной в среднем 1 мм.
- •у -излучение сильно проникающее излучение, не отклоняющееся ни в электрическом, ни в магнитном поле. Природа у -излучения жесткое электромагнитное излучение, имеющее еще более короткую длину волны, чем рентгеновское.

Типы превращений

- К числу основных типов превращений относятся:
- 1)α -распад,
- 2)β⁻-распад,
- 3)β ⁺ -распад, или электронный захват ЭЗ,
- 4) изомерный переход ИП, при котором ядра переходят из возбужденного состояния с большим временем жизни (изомерные состояния) в менее возбужденное или в основное состояние и
- 5)спонтанное деление тяжелых ядер.

Типы превращений

При этих типах превращений материнского нуклида с массовым числом *A и атомным номером Z в* дочерний нуклид изменяется массовое число и/или атомный номер:

Тип превращения	Атомный номер	Массовое число
α –распад	Z-2	A-4
β⁻-распад	Z+1	Α
β ⁺ -распад	<i>Z-1</i>	Α
Изомерный переход ИП	Z	А

ЗАКОНЫ СОХРАНЕНИЯ В РАСПАДАХ

При радиоактивном распаде сохраняются следующие параметры:

- 1. Заряд. Электрический заряд не может создаваться или исчезать. Общий заряд до и после реакции должен сохраняться, хотя может по-разному распределяться среди различных ядер и частиц. Единичный положительный и отрицательный заряды нейтрализуют друг друга.
- 2. Массовое число или число нуклонов. Число нуклонов после реакции должно быть равно числу нуклонов до реакции.
- 3. Общая энергия. Кулоновская энергия и энергия эквивалентных масс должна сохраняться во всех реакциях и распадах.
- 4. Импульс и угловой момент. Сохранение линейного импульса ответственно за распределение кулоновской энергии среди ядер. частиц и/или электромагнитного

ЗАКОНЫ СОХРАНЕНИЯ В РАСПАДАХ

При радиоактивном распаде выполняется закон сохранения электрических зарядов:

$$Z_{\mathfrak{g}}e = \sum_{i} Z_{i}e$$

и закон сохранения массовых чисел:

$$A_{_{\mathcal{B}}} = \sum A_{_{i}}$$

 $Z_{i}e$ и $A_{_{\mathcal{A}}}$ — соответственно заряд и массовое число материнского ядра;

 $Z_i e$ и A_i — соответственно заряды и массовые числа частиц, получившихся в результате радиоактивного распада.

Правила смещения

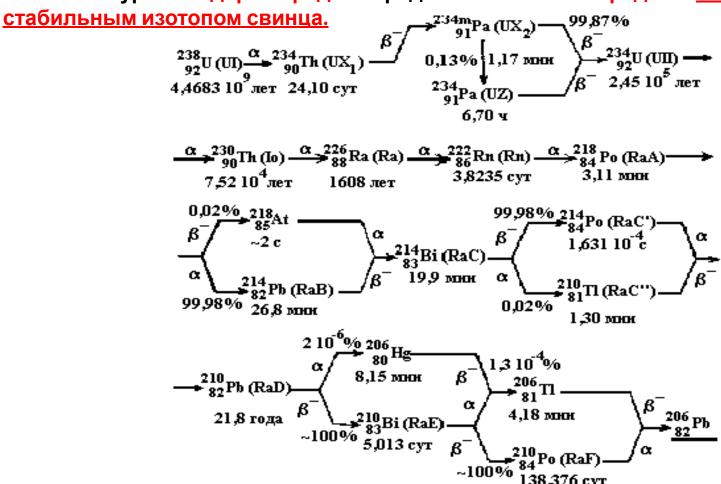
Следствием этих законов являются правила смещения, позволяющие установить, какое ядро возникает в результате распада данного материнского ядра в различных типах радиоактивного распада:

$$_{Z}^{A}X \rightarrow_{Z-2}^{A-4}Y +_{2}^{4}He$$
 для α -распада, $_{Z}^{A}X \rightarrow_{Z+1}^{A}Y +_{-1}^{0}e$ для β -распада, распада, $_{Z}^{A}X \rightarrow_{Z-1}^{A}Y +_{+1}^{0}e$ для β -распада, распада.

- •Радиоактивность, наблюдающаяся у изотопов, существующих в природных условиях, называется естественной.
- •Радиоактивность изотолов, полученных посредством ядерных реакций, называется искусственной.
- •Ядра, подверженные радиоактивным превращениям, называются радиоактивными,
- •а не подверженные стабильными.

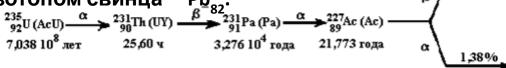
Такое деление условно, так как, в сущности, все ядра могут самопроизвольно распадаться, но этот процесс в разных ядрах идет с различной скоростью.

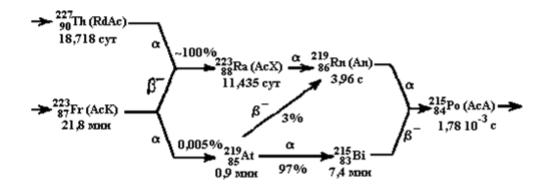
12

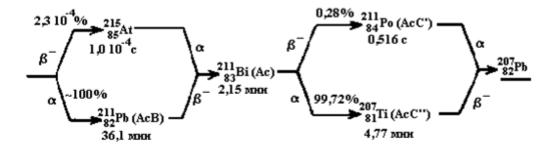

Изобарные цепочки

Все известные радиоактивные нуклиды объединены в изобарные цепочки, каждая из которых показывает все радиоактивные превращения ядер с данным массовым числом А. Пример цепочек радиоактивных превращений трех радиоактивных природных семейств:

- Урана,
- •Актиния,
 - •Тория.

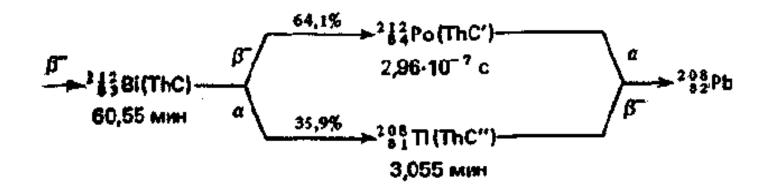

Семейство урана


Первое семейство называется *семейством урана*. *Оно начинается с α -* активного изотопа урана, который с периодом полураспада 4.5·10⁹ лет превращается в торий. В свою очередь, торий является β-радиоактивным изотопом и с периодом 24 дня превращается в β-радиоактивный протактиний и т.д. Среди других ядер семейство урана содержит радий и радиоактивный газ – радон и <u>заканчивается</u>



Семейство актиния

Второе семейство—семейство актиноурана — начинается с другого α -активного изотопа урана, который с периодом полураспада примерно $7\cdot10^8$ лет превращается в торий, испускающий β -частицы и превращающийся в протактиний . Этот изотоп в отличие от $^{234}Pa_{91}$ является α -радиоактивным и превращается в актиний 227 Ac_{89} и т. д. Семейство актиноурана, как и семейство урана, содержит радиоактивный газ — радон и заканчивается вторым стабильным изотопом свинца $^{207}Pb_{92}$.



Семейство тория

Наконец, третье семейство — семейство тория - начинается с срадиоактивного изотопа тория, имеющего период полураспада $1,4\cdot 10^{10}$ лет и превращающегося в β -радиоактивный изотоп радия и т. д. Это семейство также содержит в своем составе радиоактивный газ радон и заканчивается третьим стабильным изотопом свинца (что указывает на особую устойчивость ядер свинца).

$$\frac{\beta^{-}}{^{2}}$$
 Th (Th) $\frac{\alpha}{}$ \Rightarrow $\frac{2^{2}}{8^{8}}$ Ra(MsThI) $\xrightarrow{}$ \Rightarrow $\frac{\beta^{-}}{8^{9}}$ Ac(MsThII) $\xrightarrow{}$ \Rightarrow $\frac{2^{1}}{9^{0}}$ Th (RdTh) $\xrightarrow{}$ 1,405·10¹⁰ лет 5,75 года 6,15 ч 1,9131 года

$$\frac{\alpha}{-2}^{2}_{88}^{4} Ra(ThX) \xrightarrow{\alpha} {}^{2}_{86}^{20} Rn(Tn) \xrightarrow{\alpha} {}^{2}_{84}^{16} Po(ThA) \xrightarrow{\alpha} {}^{2}_{82}^{12} Pb(ThB) \longrightarrow$$
3,66 cyr 55,61 c 0,145 c 10,64 ч

Из приведенных участков цепочек видно, что массовые числа элементов в <u>пределах каждого</u> радиоактивного семейства

- •или не меняются совсем, а <u>заряд</u> <u>следующего</u> <u>элемента повышается на единицу,</u>
- •или изменяются на четыре единицы, <u>а</u> <u>заряд</u> <u>следующего элемента</u> <u>понижается на две единицы.</u>

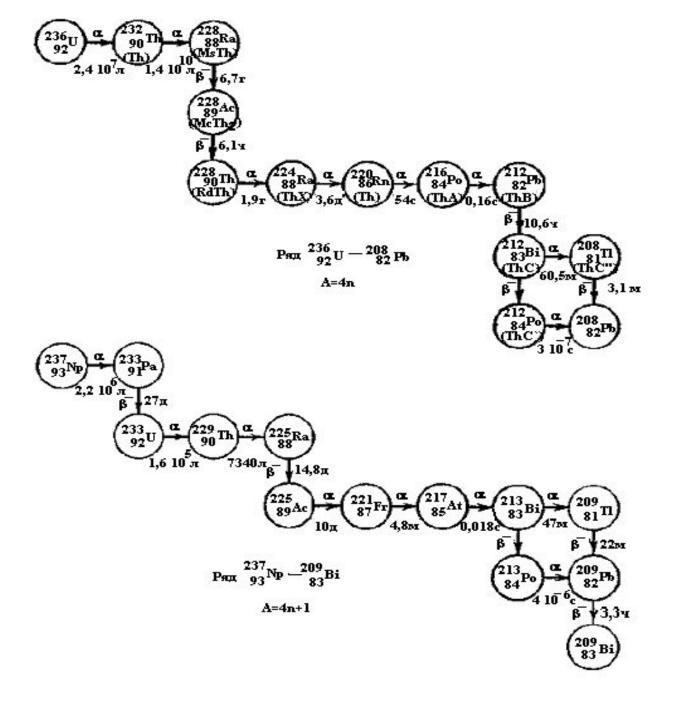
Эта закономерность, названная правилами смещения, очевидно, объясняется тем, что радиоактивное превращение сопровождается

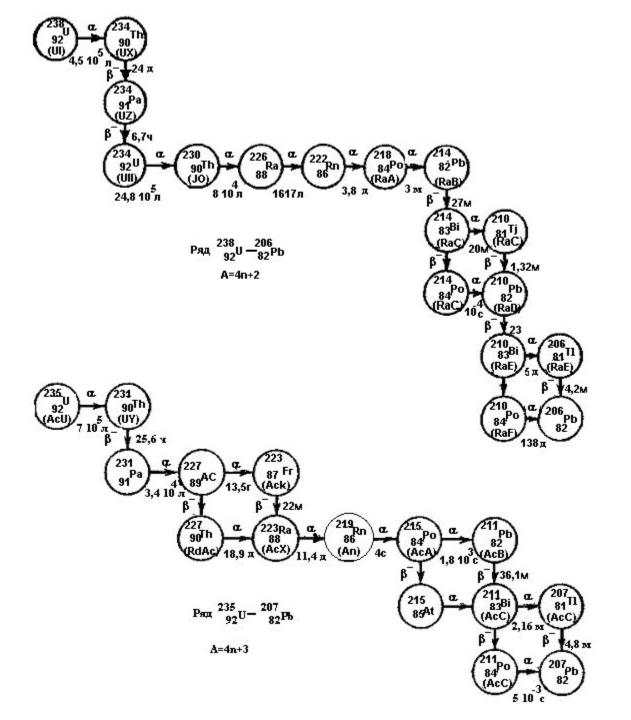
- •либо испусканием β-частицы (электрона), в результате чего заряд ядра повышается на единицу, а массовое число остается неизменным,
- •либо испусканием α- частицы, уносящей четыре массовые единицы и двойной заряд.

Из правил смещения вытекает, что массовые числа членов всех трех семейств описываются следующей формулой:

$$A = 4n + C,$$

где n —целое число;


С = 2 для семейства урана (n > 50),


С = 3 для семейства актиноурана (n> 50),

С = 0 для семейства тория (n > 51).

Обращает на себя внимание отсутствие четвертого семейства при С = 1, существование которого в принципе можно ожидать.

Такое семейство действительно существует, но оно состоит из изотопов, не встречающихся в природе. Четвертое семейство было открыто только после того, как научились искусственно получать изотопы различных элементов.

Закон радиоактивного превращения

Закон радиоактивного превращения весьма прост. Для каждого радиоактивного ядра имеется определенная вероятность λ того, что оно испытывает превращение в единицу времени. Следовательно, если радиоактивное вещество содержит *N атомов, то* количество атомов dN, которое претерпит превращение за время dt, будет равно

 $dN = -\lambda N dt$

Вероятность распада λ входит в это уравнение в качестве коэффициента, который называется постоянной распада. Знак минус соответствует убыванию вещества в процессе распада.

Закон радиоактивного превращения

Решив уравнение найдем следующий закон изменения числа радиоактивных ядер со временем:

$$N = N_0 \exp(-\lambda t)$$
,

где N_0 – число атомов вещества до начала распада.

Если в полученное уравнение подставить вместо времени t период полураспада T_{y} , то можно найти связь постоянной распада λ с периодом полураспада T_{y} .

 $^{''}$ Действительно, так как $N(T_{\frac{1}{2}}) = N_{0}/2$, то N_{0} ехр(- λ $T_{\frac{1}{2}}) = N_{0}/2$ и ехр(- λ $T_{\frac{1}{2}}) = 1/2$, Откуда

$$\lambda = \ln 2/T_{1/2} \approx 0.69/T_{1/2}$$

Старейшей, до сих пор наиболее употребительной единицей радиоактивности является кюри (Ки) и ее дольные единицы: милликюри (1мКи=10⁻³) и микрокюри (1мкКи=10⁻⁶Ки). По первоначальному определению кюри есть активность одного грамма изотопа радия ²²⁶Ra₈₈. Однако, для удобства измерений это определение дальнейшем было заменено следующим:

1Ки = 3,700· 10^{10} Бк; 1Бк = 0,27· 10^{-10} Ки.

Рассмотрим в общем виде уравнение баланса нуклидов в радиоактивной цепочке из материнского ядра и *i-1 дочерних радионуклидов* (число ядер *i - го типа N_i) с постоянными распада соответственно λ_i.*

Система дифференциальных уравнений для линейной цепочки, характеризующая распад и накопление числа радиоактивных атомов имеет вид:

$$dN_{1}(t)/dt = -\lambda_{1}dN_{1}(t);$$

$$dN_{2}(t)/dt = -\lambda_{2}dN_{2}(t) + \lambda_{1}dN_{1}(t);$$
.....

 $dN_i(t)/dt = -\lambda_i dN_i(t) + \lambda_{i-1} dN_{i-1}(t)$

Пусть $N_i(0)$ - число ядер материнского радионуклида в начальный момент времени t=0. Тогда для любого времени t решение уравнений имеет в $\mathbb{E}_{q}(0) \exp(-\lambda_{q} t)$;

$$N_{2}(t) = N_{1}(0) \frac{\lambda_{1}}{\lambda_{2} - \lambda_{1}} \left[\exp(-\lambda_{1}t) - \exp(-\lambda_{2}t) \right]$$

$$N_{3}(t) = N_{1}(0)\lambda_{1} \cdot \lambda_{2} \left[\frac{\exp(-\lambda_{1}t)/(\lambda_{2} - \lambda_{1})(\lambda_{3} - \lambda_{1}) + \exp(\lambda_{2}t)/(\lambda_{1} - \lambda_{2})(\lambda_{3} - \lambda_{2}) + \right]$$

$$+ \exp(\lambda_{3}t)/(\lambda_{1} - \lambda_{3})(\lambda_{2} - \lambda_{3})$$

.....

$$N_{i}(t) = N_{1}(0)\lambda_{1} \cdot \lambda_{2}...\lambda_{i-1} \left[\frac{\exp(-\lambda_{1}t)/(\lambda_{2} - \lambda_{1})(\lambda_{3} - \lambda_{1})...(\lambda_{i} - \lambda_{1}) + ...}{\exp(\lambda_{i}t)/(\lambda_{1} - \lambda_{i})(\lambda_{2} - \lambda_{i})...(\lambda_{i-1} - \lambda_{i})} \right]$$

Активность источника A определяется как произведение постоянной распада λ на число радиоактивных ядер в источнике N

$$A = \lambda N \qquad (**)$$

- Если N число ядер в 1 г вещества, т.е. N = N_o/A (ядер/г) (где $N_o \approx 6.10^{23}$ число Авогадро, A массовое число), то говорят об удельной активности $A_{m'}$ $E\kappa/s$;
- если N число ядер в единице объема, т.е. $N = \rho N_0/A$ (где ρ плотность в г/см3), то по формуле (**) определяется объемная активность A_V , EK/CM^3 .

Формулы расчета активности материнского и дочерних продуктов в линейной цепочке в момент

времени *t:* $A_1(t) = A_1(0) \exp(-\lambda_1 t);$

$$A_2(t) = A_1(0) \frac{\lambda_1}{\lambda_2 - \lambda_1} \left[\exp(-\lambda_1 t) - \exp(-\lambda_2 t) \right] \qquad (***)$$

и так далее в соответствии с формулами (*), (**).

При
$$\lambda_1 << \lambda_2$$
 (или $(T_2)_1 >> (T_2)_2$)

$$A_2(t) = A_1(0) \frac{\lambda_1}{\lambda_2} \left[1 - \exp(-\lambda_2 t) \right]$$

То есть, количество (активного) дочернего радионуклида возрастает со временем по экспоненциальному закону с λ_2 дочернего радионуклида и при $t>> (T/2)_2$ приближается к своему предельному значению

$$A_2 = A_2 \left(0\right) \frac{\lambda_1}{\lambda_2}$$

При
$$\lambda_1 >> \lambda_2$$
 (или $(T_2)_1 << (T_2)_2$)
$$A_2(t) = A_1(0) \exp(-\lambda_1 t),$$

то есть активность дочернего радионуклида падает со временем по

экспоненциальному закону с λ_1 материнского радионуклида.

Соотношение активности A_1 материнского и A_2 дочернего радионуклидов $(T_{y_2})_1 >> (T_{y_2})_2$ и при $t > 10(T_{y_2})_2$ записывается обычно в форме

$$\lambda_1 N_1 = \lambda_2 N_2,$$

где N_1 и N_2 - число ядер материнского и дочернего радионуклидов.

Это так называемое вековое (или секулярное) равновесие. Оно означает, что число распадов дочерних радионуклидов $\lambda_2 N_2$ равно числу распадов $\lambda_1 N_1$ материнского радионуклида (то есть, числу образующихся при этом ядер дочернего радионуклида $\lambda_1 N_1$).

Активность *N (Бк, Ки) радионуклидов связана с массой m (г)* радиоактивного изотопа следующими соотношениями:

$$m = a_1 A T_{1/2} N;$$
 $m = a_2 A T_{1/2} N;$ $N = b_1 m / A T_{1/2};$ $N = b_2 m / A T_{1/2};$

Констант ы	Сек	Мин	Час	Сутки	Год	
a ₁	2,40·10 ⁻²⁴	1,44·10 ⁻²²	8,62·10 ⁻²¹	2,07·10 ⁻¹⁹	7,56·10 ⁻¹⁷	
a ₂	8,86·10 ⁻¹⁴	5,32·10 ⁻²¹	3,19·10 ⁻¹⁰	7,66·10 ⁻⁹	2,80·10 ⁻⁶	
b ₁	4,17·10 ²³	6,94·10 ²²	1,16·10 ²⁰	4,83·10 ¹⁸	7,32·10 ¹⁶	
b ₂	1,13·10 ¹³	1,88·10 ¹¹	3,13·10 ⁹	3,57·10 ⁵	1,30·10 ⁸	
						30

Задача. При радиоактивном распаде ядер нуклида A_1 образуется радионуклид A_2 . Их постоянные распада равны λ_1 и λ_2 , соответственно.

Полагая, что в начальный момент времени препарат содержит только ядра нуклида A_1 в количестве $N_1(0)$, определить:

- а) количество ядер A, через промежуток времени t;
- б) промежуток времени, через который количество ядер A, достигнет максимума;
- в) в каком случае может возникнуть состояние переходного равновесия, при котором отношение количества обоих нуклидов будет оставаться постоянным. Чему равно это отношение?