Санкт-Петербургский государственный технологический университет растительных полимеров

Кафедра ИИТСУ

Диссертация на тему: Разработка экспертно-диагностической системы для управления процессом биологической очистки сточных вод

Выполнил: Курашов С.В.

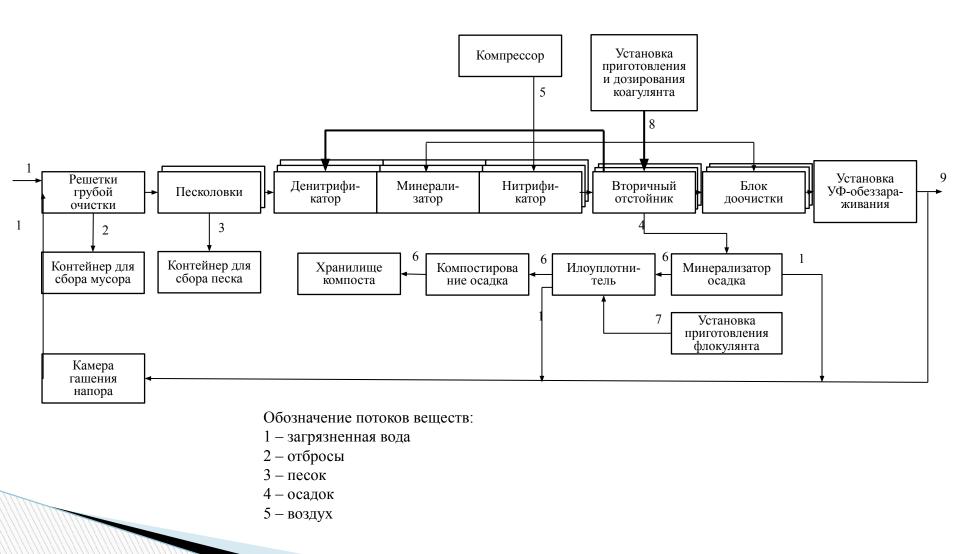
студент

539 группы

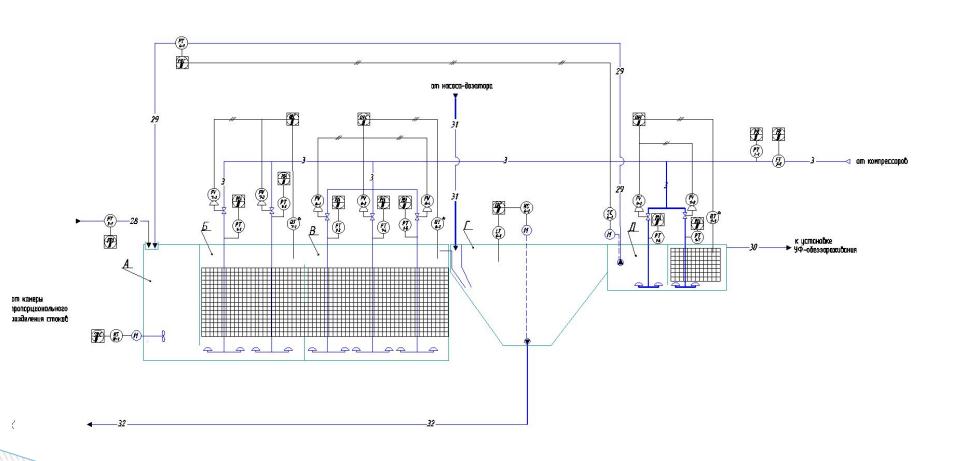
Руководитель: Дятлова Е.П

К.Т.Н.

Санкт-Петербург 2015 г.


Цель работы:

■ Модернизация системы автоматизации технологического процесса биологической очистки сточных вод с дополнением ее функцией диагностики нештатных ситуации


Задачи:

- Провести анализ технологического процесса биологической очистки сточных вод.
- Разработать систему автоматизации и выполнить подбор комплекса технических средств для данного процесса.
- Разработать диагностическую модель процесса и экспертную систему для диагностики нештатных ситуаций на процессе
- Разработать алгоритм работы системы диагностики и провести его тестирование.

Технологическая схема процесса

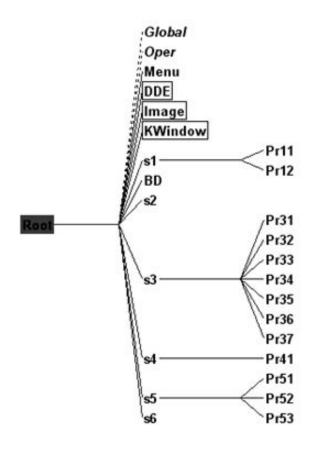
Функциональная схема автоматизации

Существующие системы

Название. Разработчик	Основные функции и характеристики
ЭС реального времени. (Baeza,J)	Регулирование работы очистных сооружений. Управление процессом очистки сточных вод через Интернет.
ЭС для определения состояния очистных сооружений. (Riano)	Система автоматического построения правил, используемых для идентификации состояния очистных сооружений.
ЭС для управления очистными соору-жениями.(Yang)[Экспертная система для определения последовательности стадий очистки воды на очистных сооружениях
ЭС для управления ОС.(Wiese, J., Stahl, A., Hansen,J.) [Экспертная система для определения вредных микроорганизмов в системе активного ила
ЭС по сокращению ущерба от загрязнения водных ресурсов. (Университет Сев. Каролины)	Оценка потенциальных воздействий для управления рассеянными источниками загрязнения в бассейне рек, основанная на информации и решениях, поступающих от пользователя.
ЭС реального времени для управления очистными сооружениями, (Sanchez-Marre)	ППР при наблюдении, комплексном контроле и управлении работой очистных сооружений. Комбинирует во фреймовую структуру: обучение, рассуждение, приобретение знаний, распределенное принятие решений. Правила вывода частично моделируют данные и экспертные знания. Система на прецедентах моделирует эмпирические знания.
Управление системой активного ила. (Comas ,J.)	Система контроля и управления системой активного ила на биологических очистных сооружениях. Ядро и основные модули разработаны на основе объектно-ориентированной оболочки, реализующей механизм логического вывода. Управляет получением данных, БД, системой правил и прецедентов.

Продукционные правила

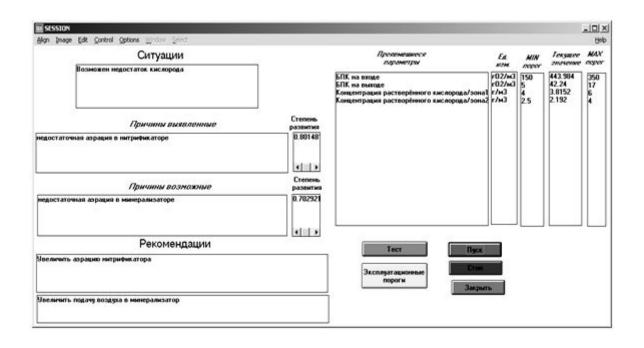
3.0	Если		то		
No	Параметр	Значение	Состояние процесса	Рекомендации	
1	Уровень ила в отстойнике	высокий	Вымывание ила вследствие	Увеличить расход рецикла Уменьшить аэрацию	
	Расход поступающей воды	высокий	повышенной гидравлической нагрузки		
2	Уровень ила в отстойнике			Увеличить аэрацию Увеличить периодичность откачки ила из	
	БПК воды на входе	высокое	нарушения состава ила («вспухание»)	увеличить периодичность откачки ила из отстойника	
3	Давление от компрессора	высокое	Идёт продувка системы аэрации	-	
4	Давление в аэраторе №п	высокое	Засорение аэратора №п	Включить продувку системы аэрации	
4	Давление от компрессора	нормальное	засорение аэратора мен		
5	БПК воды на входе	низкое	Дефицит питательных для ила	Videntitutti, pooyon politicilo	
3	БПК воды на выходе	высокое	веществ	Увеличить расход рецикла	
	БПК воды на входе	высокое			
6	БПК воды на выходе	высокое	Недостаток кислорода в зоне	Увеличить аэрацию зоны № n	
	Концентрация растворённого кислорода в зоне № n	высокая	аэрации № п		


Структура экспертной системы

Основные технологические параметры

№ п	Обозначение параметра в	Наименование параметра	Ед. изм.	Аварийная зона	Эксплуатационная зона (пороги)		Аварийн ая зона
	базе данных			мин	нижний	верхний	макс.
1	BODin	БПК на входе	$\Gamma O_2/M^3$	20	150	350	500
2	BODout	БПК на выходе	$\Gamma O_2/M^3$	0	5	17	20
3	Q1	Концентрация растворённого кислорода в зоне № 1 (минерализация)	г/м ³	2,5	4	6	10
4	Fin	Расход поступающей воды	м ³ /ч	250	350	790	830
5	Lil	Уровень ила в отстойнике	М	0	0,5	3,5	4
6	Q2	Концентрация растворённого кислорода в зоне № 2 (нитрификация)	г/м ³	2	2,5	4	5
7	Q3	Концентрация растворённого кислорода в зоне № 3 (доочистка)	г/м ³	2	2,5	4	5
8	P1	Давление в аэраторе №1	кПа	10	20	40	50
9	P2	Давление в аэраторе №2	кПа	10	20	40	50
	Pn	Давление в аэраторе №n	кПа	10	20	40	50
14	P7	Давление в аэраторе №7	кПа	10	20	40	50
15	Pkom	Давление от компрессора	кПа	10	30	50	100

Иерархическая структура базы знаний


Примеры заполнения базы данных и базы правил

Номер парамет	ра в ба	зе данных	5 Про	• осмотр			
Наименование параметра	Урове	нь ила во втори	чнон	м отстойни	ike		- 1
Эксплуатаци пороги		Максимальны Минимальны		3.5 0.5			
		Единицы измерения		н			
			За	пись		Назад	

Рис. 4.6 - Пример заполнения базы данных

e Editor - Int_S		
e Edit Search Options		
Patterns:	Priority:	
If:Global:u#= int;	.,	
DisplayText(Transcript8, DisplayText(Transcript9, DisplayText(Transcript10 DisplayText(Transcript11 DisplayText(Transcript12 s1:Sts1 = 1; } Else { s1:Sts1 = 0; }; If (Oper:Pkom > GetNthElem(Then {	FormatValue("%os\n", s1:text)); FormatValue("%os\n", GetNthElem(BD:Name, 5))); FormatValue("%os\n", GetNthElem(BD:Eix, 5))); FormatValue("%os\n", GetNthElem(BD:Min, 5))); FormatValue("%os\n", Oper:Lil)); FormatValue("%os\n", GetNthElem(BD:Max, 5)));	

Результат работы одного из правил экспертной системы

Заключение

В результате выполнения проекта:

- Проанализирован технический процесс биологической очистки сточных вод;
- Модернизирована система автоматизации и выполнен подбор современных технических средств;
- Разработана диагностическая модель процесса и экспертная система для диагностики нештатных ситуации на процессе.

Спасибо за внимание!