

Решение прикладных задач

Студенты группы 03-11 нэо:

Медведева Е.В.

Дорофеева В.В.

Анисимова Е.О.

Фокина М.А.

Патрулина Н.О.

Деделькина Н.А.

Условие: Завод выпускает два вида строительных материалов: жидкое стекло и пенопласт. Трудозатраты на производство 1 т. стекла – 20 ч., пенопласта – 10ч. На заводе работает 10 рабочих по 40 часов в неделю. Оборудование позволяет производить не более 15 т. стекла и 30 т. пенопласта в неделю. Прибыль от реализации 1 т. стекла – 50 руб., 1 т. пенопласта – 40 руб. Сколько материалов каждого вида необходимо произвести для того, чтобы получить максимальную прибыль?

	Пенопласт	Жидкое	Ограничения	
		стекло		
Трудозатраты	10	20	≤400	
Прибыль от реализации	40	50	мах	
Количество продукции	≤30	≤15		

Решение:

Обозначим через x_1 , x_2 выпуск жидкого стекла и пенопласта в тоннах в неделю, соответственно.

Оборудование позволяет производить не более 15 т. стекла и 30 т. пенопласта в неделю, следовательно, $x_1 \le 15\,$ и $x_2 \le 30\,$.

Трудозатраты на производство x_1 тонны жидкого стекла и x_2 тонны пенопласта со ставят $20x_1+10x_2$ часов, и так как на заводе работает 10 рабочих по 40 часов в неделю, то $20x_1+10x_2 \leq 400$.

Прибыль от реализации 1 т. стекла — 50 руб., 1 т. пенопласта — 40 руб., поэтому $Z = 50x_1 + 40x_2 \rightarrow \max$.

Составим математическую модель

Необходимо составить такой план выпуска, при котором функция $Z = 50x_1 + 40x_2$ достигает максимума и будут выполнены ограничения

$$\begin{cases} 20x_1 + 10x_2 \le 400, \\ x_1 \le 15, \\ x_2 \le 30, \\ x_1 \ge 0, x_2 \ge 0 \end{cases}$$

или
$$Z = 50x_1 + 40x_2 \longrightarrow \max$$
 $\begin{cases} 2x_1 + x_2 \le 40, \\ x_1 \le 15 \\ x_2 \le 30 \end{cases}$ $x_1 \ge 0, x_2 \ge 0$

Условие: Предприятие располагает ресурсами сырья и рабочей силы, необходимыми для производства двух видов продукции. Запас сырья составляет 120 т., трудозатрат – 400 часов. На единицу первого продукта необходимо затратить 3 т. сырья, на единицу второго – 5 т. На единицу первого продукта тратится 14 ч.. второго – 12 ч. Прибыль от реализации единицы первого продукта равна 30тыс./т., второго продукта – 35 тыс./т. Чему равна максимальная прибыль?

	X 1	X2	Ограничение
Сырье	3 т	5 т	120 т
Рабочая сила	14 ч	12 ч	400 ч
Прибыль	30 тыс/т	35 тыс/т	мах

Решение: Обозначим через x₁, x₂ выпуск жидкого стекла и пенопласта в тоннах в неделю, соответственно.

Оборудование позволяет производить не более 15 т. стекла и 30 т. пенопласта в неделю, следовательно, $x_1 \le 15$ и $x_2 \le 30$.

Трудозатраты на производство x_1 тонны жидкого стекла и x_2 тонны пенопласта со ставят часов, и так как на заводе работает 10 рабочих по 40 часов в неделю, то $20x_1 + 10$ $x_2 \le 400$.

Прибыль от реализации 1 т. стекла — 50 руб., 1 т. пенопласта — 40 руб., поэтому $F = 50 x_1 + 40 x_2 - 80 x_1 + 40 x_2$

Необходимо составить такой план выпуска, при котором функция $F = 50 x_1 + 40 x_2$ достигает максимума и будут выполнены ограничения:

$$\begin{cases} 20x_1 + 10x_2 \le 400, \\ x_1 \le 15, \\ x_2 \le 30, \\ x_1 \ge 0, x_2 \ge 0 \end{cases}$$

Условие: Предприятие производит продукцию двух видов, используя для этого ресурсы трех видов. Известна технологическая матрица А и вектор ресурсов b. Элемент технологической матрицы ai,j соответствует ресурсу i, необходимому для производства единицы продукта j.

Технологическая матрица
$$A = \begin{pmatrix} 1 & 3 \\ 1 & 1 \\ 2 & 0 \end{pmatrix}$$
 вектор $b = \begin{pmatrix} 90 \\ 50 \\ 80 \end{pmatrix}$

Решение:

Обозначим x_1 , x_2 число единиц продукции 1-ого и 2-ого видов, запланированных к производству. Известна технологическая матрица A и вектор ресурсов b. Количество продукции x_1 и x_2 удовлетворяет системе ограничений:

$$\begin{pmatrix} 1 & 3 \\ 1 & 1 \\ 2 & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \le \begin{pmatrix} 90 \\ 50 \\ 80 \end{pmatrix} \implies \begin{cases} x_1 + 3x_2 \le 90, \\ x_1 + x_2 \le 50, \\ 2x_1 \le 80, \end{cases}$$

Условие: Предприятие имеет ресурсы А и В в количестве 240 и 120 единиц соответственно. Ресурсы используются при выпуске двух видов изделий, причем расход на изготовление одного изделия первого вида составляет 3 единицы ресурса А и две единицы ресурса В, на изготовление одного изделия второго вида – 2 единицы ресурса А и 2 единицы ресурса В Прибыль от реализации одного изделия первого вида -20 руб., второго вида -30 руб. Ресурс В должен быть использован полностью, изделий первого вида надо выпустить не менее, чем изделий второго вида.

	x1	x2	Наличие
A	3 ед	2 ед	240 ед
В	2 ед	2 ед	120 ед
Прибыль	20 руб	30 руб	

Решение. Обозначим x_1 , x_2 число единиц продукции 1-ого и 2-ого видов, запланированных к производству. Для их изготовления потребуется $3x_1 + 2x_2$ единиц ресурса А и $2x_1 + 2x_2$ единиц ресурса В. Предприятие имеет ресурсы А и В в количестве 240 и 120 единиц соответственно.

Прибыль от реализации единицы первого продукта равна 20руб, второго продукта – 30 руб., следовательно, прибыль равна $Z = 20x_1 + 30x_2$.

Так как изделий первого вида надо выпустить не менее, чем изделий второго вида, то $x_1 \ge x_2$.

Сформулируем экономико-математическую модель задачи:

Найти такой план выпуска продукции $\overline{x} = (x_1, x_2)$, удовлетворяющий системе

$$\begin{cases} 3x_1 + 2x_2 \le 240, \\ 2x_1 + 2x_2 = 120, \\ x_1 - x_2 \ge 0 \end{cases}$$

$$x_1 \ge 0, \ x_2 \ge 0$$

при котором функция $Z = 20x_1 + 30x_2$ принимает максимальное значение $(Z = 20x_1 + 30x_2 \rightarrow \max)$.

Условие: Компания, занимающаяся добычей руды, имеет четыре карьера. Производительность карьеров соответственно 170, 130, 190, 200 тыс. т. ежемесячно. Руда направляется на три обогатительные фабрики, мощности которых соответственно 250, 150, 270 тыс. т. в месяц. Транспортные затраты на перевозку 1тыс. т. руды с карьеров на фабрики заданы таблично. Сформировать таблицу транспортных затрат самостоятельно. Составить математическую модель задачи.

Запишем таблицу транспортных затрат

$$C = \begin{pmatrix} 12 & 14 & 21 \\ 14 & 14 & 19 \\ 3 & 8 & 14 \\ 24 & 33 & 36 \end{pmatrix}$$

Обозначим через x_{ij} количество руды (тыс. тонн) перевезённое с **i-ого** карьера на **j-**ую обогатительную фабрику.

Затраты на перевозку равны $Z = \sum_{i=1}^4 \sum_{j=1}^3 c_{ij} x_{ij}$.

На карьерах добывается 170+130+190+200=690 тыс. т. руды.

Обогатительные фабрики перерабатывают 250+150+270=670 тыс. т руды, меньше чем добывают.

Сформулируем экономико-математическую модель задачи.

Необходимо найти минимум функции $Z = \sum_{i=1}^4 \sum_{j=1}^3 c_{ij} x_{ij}$ при ограничениях:

$$\begin{cases} x_{11} + x_{12} + x_{13} \le 170, \\ x_{21} + x_{22} + x_{23} \le 130, \\ x_{31} + x_{32} + x_{33} \le 190, \\ x_{41} + x_{42} + x_{43} \le 200, \\ x_{11} + x_{21} + x_{31} + x_{41} = 250, \\ x_{12} + x_{22} + x_{32} + x_{42} = 150, \\ x_{13} + x_{23} + x_{33} + x_{43} = 270, \\ x_{ij} \ge 0, \ i = 1, 2, 3, 4; \ j = 1, 2, 3; \end{cases}$$

Условие: Компания, занимающаяся добычей руды, имеет четыре карьера. Производительность карьеров соответственно 170, 130, 190, 200 тыс. т. ежемесячно. Руда направляется на три обогатительные фабрики, мощности которых соответственно 250, 150, 270 тыс. т. в месяц. Транспортные затраты на перевозку 1тыс. т. руды с карьеров на фабрики заданы таблично. Сформировать таблицу транспортных затрат самостоятельно. Составить математическую модель задачи.

	x1	x2	х3	x4	х5	Мах время работы станков
А станок	3	5	11	10	5	100
В станок	5	10	15	3	2	250
С станок	4	8	6	12	10	180
Время выполнения операции	100	120	70	110	130	

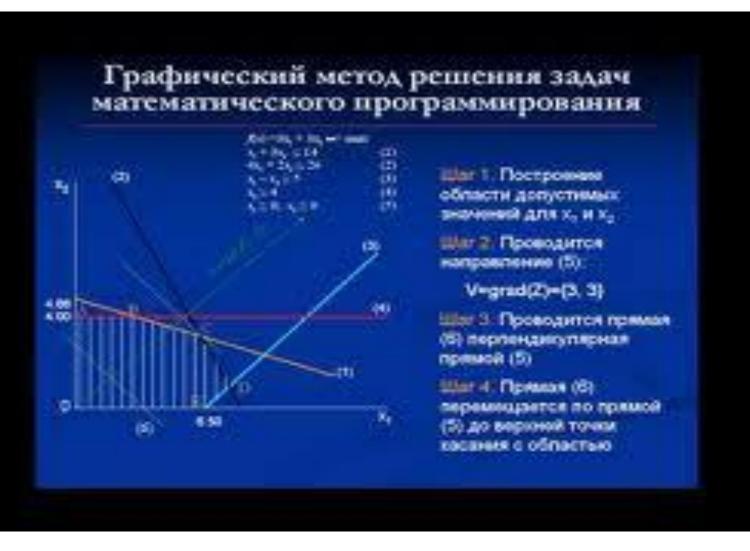
Обозначим через x_{ij} время (часов) затраченное і-ой группой станков на выполнение ј-ой операции.

Так как время работы станков равно 100+250+180=530 ч. и время выполнения всех операций составляет 100+120+70+110+130=530 ч., то должны выполняться ограничения:

$$\begin{cases} x_{11} + x_{12} + x_{13} + x_{14} + x_{15} = 100, \\ x_{21} + x_{22} + x_{23} + x_{24} + x_{25} = 250, \\ x_{31} + x_{32} + x_{33} + x_{34} + x_{35} = 180, \\ x_{11} + x_{21} + x_{31} = 100, \\ x_{12} + x_{22} + x_{32} = 120, \\ x_{13} + x_{23} + x_{33} = 70, \\ x_{14} + x_{24} + x_{34} = 110, \\ x_{15} + x_{25} + x_{35} = 130, \\ x_{ij} \ge 0, \ i = 1, 2, 3; \ j = 1, 2, 3, 4, 5; \end{cases}$$

выше.

Необходимо найти максимум функции $Z = \sum_{i=1}^{3} \sum_{j=1}^{5} a_{ij} x_{ij}$ при ограничениях приведённых



Спасибо за внимание!!!