
IMPLEMENTING IOE

Assist. Prof. Rassim Suliyev - SDU 2017Week 4

Simple Digital and Analog Inputs

◻ The Arduino’s ability to sense digital and
analog inputs allows it to respond to you and
to the world around you

◻ Digital input pins
sense the presence
and absence of
voltage on a pin

◻ Analog input pins
measure a range of
voltages on a pin

Simple Digital and Analog Inputs

◻ digitalRead(pin) - tells your sketch if a voltage on a
pin is HIGH (5 volts) or LOW (0 volts)

◻ pinMode(pin, INPUT) – configure pin as an INPUT

◻ 14 digital pins (numbered 0 to 13)

◻ Pins 0 and 1 (marked RX and TX) are used for the
USB serial connection

◻ Need more?

◻ Analog pins 0 through 5 can be used as digital pins
14 through 19

Simple Digital and Analog Inputs

◻ Still need more?

◻ Analog pins 0 through 15 are digital pin numbers 54 through 69

Sensors & Inputs

◻ Many sensors are variations on switches

◻ Switches make or break a connection

Single pole = only one circuit is being controlled
Double pole = two circuits are being controlled at once
Single throw = only one path for circuit
Double throw = two potential paths for circuit

Many Kinds of Switches

◻ Tilt sensor has a little ball inside

◻ Magnetic switches are delicate

◻ The hex switch is actually many switches in one, and outputs 4
signals

Digital Input

◻ Switches make or break a connection

◻ But Arduino wants to see a voltage

◻ Specifically, a “HIGH” (5 volts) or a “LOW” (0 volts)

◻ How do you go from make/break to HIGH/LOW?

From Switch to HIGH / LOW

◻ With no connection, digital inputs “float” between 0
& 5 volts (LOW & HIGH)

◻ Resistor “pulls” input to ground (0 volts)

◻ Pressing switch “pushes” input to 5 volts

◻ Press is HIGH

◻ Not pressed is LOW

◻ Pull-down resistor

Pull-up and Pull-down

◻ pull-up resistors – pull the voltage up to the 5V line
that the resistor is connected to

◻ pull-down resistors – pull the voltage down to 0 volts

◻ Although 10K ohms is a commonly used value,
anything between 4.7K and 20K or more will work

Control the Blinking

◻ Connect a
button to
pin 2 with a
pull-down
resistor

◻ Turn on LED
if button
pressed
and OFF if
released

Control the Blinking

// Pushbutton sketch a switch connected to pin 2 lights the LED on pin 13

const int ledPin = 13; // choose the pin for the LED
const int inputPin = 2; // choose the input pin (for a pushbutton)
void setup() {
 pinMode(ledPin, OUTPUT); // declare LED as output
 pinMode(inputPin, INPUT); // declare pushbutton as input
}
void loop(){
 int val = digitalRead(inputPin); // read input value
 If (val == HIGH) { // check if the input is HIGH
 digitalWrite(ledPin, HIGH); // turn LED on if switch is pressed
 } else {
 digitalWrite(ledPin, LOW); // turn LED off
 }
}

Let’s Wire It Up

◻ Going from schematic to physical circuit.

Solderless Breadboards

Useful Tools

Making Jumper Wires

Using Solderless Breadboards

◻ Using needle nose pliers can help push wires &
components into holes

All Wired Up

Using Switches to Make Decisions

◻ Often you’ll want to choose between actions, based
on a data obtained from switch-like sensor
� E.g. “If motion is detected, turn on the lights”
� E.g. “If flower pot soil is dry, turn on sprinklers”

◻ Define actions, choose them from sensor inputs

◻ Let’s try that with the actions we currently know
� E.g.: If button is pressed send “Hello!” to serial port,

and if released send “Goodbye!”

Control the Blinking (pull-up)

Switch Without External Resistors

◻ Arduino has internal pull-up resistors that can be enabled by
writing a HIGH value to a pin that is in INPUT mode

const int ledPin = 13;
const int inputPin = 2;
void setup() {
 pinMode(ledPin, OUTPUT);
 pinMode(inputPin, INPUT);
 digitalWrite(inputPin,HIGH);
 // turn on internal pull-up
}
void loop(){
 int val = digitalRead(inputPin);
 if (val == HIGH) {
 digitalWrite(ledPin, HIGH);
 } else {
 digitalWrite(ledPin, LOW);
 }
}

Reliably Detecting the Switch State

◻ contact bounce produces spurious signals at the moment the
switch contacts close or open

◻ avoid false readings due to contact bounce - debouncing

boolean debounce(int pin) {
 boolean state;
 boolean previousState;
 previousState = digitalRead(pin); // store switch state
 for(int cnt=0; cnt < debounceDelay; cnt++) {
 delay(1); // wait for 1 millisecond
 state = digitalRead(pin); // read the pin
 if(state != previousState) {
 cnt = 0; // reset the counter if the state changes
 previousState = state; // and save the current state
 }
 }
 return state;
}

Analog Input

◻ To computers, analog is chunky

Analog Input

◻ Many states, not just two (HIGH/LOW)

◻ Number of states (or values, or “bins”) is resolution

◻ Common computer resolutions:
� 8-bit = 256 values
� 16-bit = 65,536 values
� 32-bit = 4,294,967,296 values

Analog Input

◻ Arduino (ATmega168) has six ADC inputs

◻ (ADC = Analog to Digital Converter)

◻ Reads voltage between 0 to 5 volts

◻ Resolution is 10-bit (1024 values)

◻ In other words, 5/1024 = 4.8 mV smallest voltage
change you can measure

Analog Input

◻ Sure sure, but how to make a varying voltage?

◻ With a potentiometer. (pot)

Potentiometers

◻ Moving the knob is like moving where the arrow taps
the voltage on the resistor

◻ When a resistor goes across a voltage difference, like
+5V to Gnd, the voltage measured at any point
along a resistor’s length is proportional to the distance
from one side.

What good are pots at?

◻ Anytime you need a ranged input

◻ Measure rotational position

◻ steering wheel, robotic joint, etc.

◻ But more importantly for us, potentiometers are a
good example of a resistive sensor

Arduino Analog Input

◻ Plug pot directly into breadboard

◻ Two “legs” plug into +5V & Gnd (red + & blue -)
buses

◻ Middle “post” plugs into a row (row 7 here)

◻ Run a wire from that row to Analog In 2

Pot & LED Circuit

Pot Blink Rate

/*
 Pot sketch
 blink an LED at a rate set by the position of a potentiometer
*/
const int potPin = 0; // select the input pin for the
potentiometer
const int ledPin = 13; // select the pin for the LED
int val = 0; // variable to store the value coming from the sensor
void setup(){
 pinMode(ledPin, OUTPUT); // declare the ledPin as an OUTPUT
}
void loop() {
 val = analogRead(potPin); // read the voltage on the pot
 digitalWrite(ledPin, HIGH); // turn the ledPin on
 delay(val); // blink rate set by pot value (in milliseconds)
 digitalWrite(ledPin, LOW); // turn the ledPin off
 delay(val); // turn led off for same period as it was turned on
}

