СИНДРОМ РАЗДРАЖЕННОГО КИШЕЧНИКА: МЕСТО ПРОБИОТИЧЕСКОЙ ТЕРАПИИ

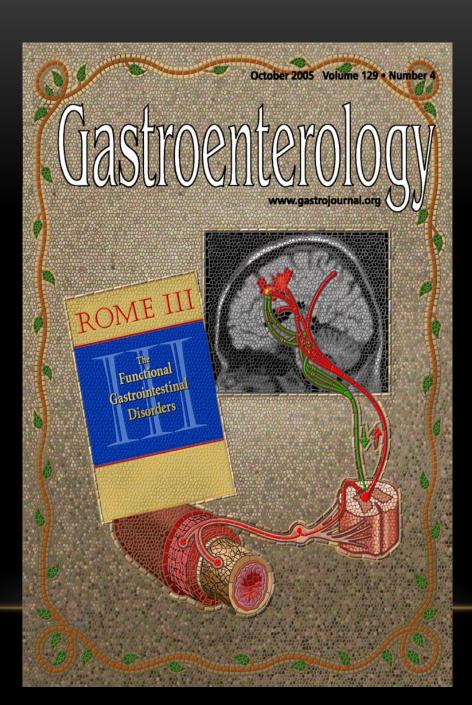
М.А. Ливзан

СРК - история вопроса

• 1849 – W Cumming¹

"У некоторых пациентов кишка иногда подвержена запорам, иногда — расслаблена. Я не могу понять как одна болезнь может иметь разные симптомы…»

• Другие термины


- слизистый колит
- колоноспазм
- спастический колит
- неврогенная толстая кишка

• 1962 – Chaudhary & Truelove² Синдром раздраженной толстой кишки

1966 – CJ DeLor³

Синдром раздраженного кишечника

Rome III

Irritable bowel syndrome: a global perspective

April 20, 2009

Review team

Prof. Eamonn Quigley (Chairman, Ireland)

Prof. Michael Fried (Switzerland)

Prof. K.A. Gwee (Singapore)

Prof. C. Olano (Uruguay)

Prof. F. Guarner (Spain)

Prof. I. Khalif (Russia)

Prof. P. Hungin (United Kingdom)

Prof. G. Lindberg (Sweden)

Prof. Z. Abbas (Pakistan)

Prof. L. Bustos Fernandez (Argentina)

Prof. F. Mearin (Spain)

Prof. S.J. Bhatia (India)

Prof. P.J. Hu (China)

Prof. M. Schmulson (Mexico)

Dr. J.H. Krabshuis (France)

Dr. A.W. Le Mair (The Netherlands)

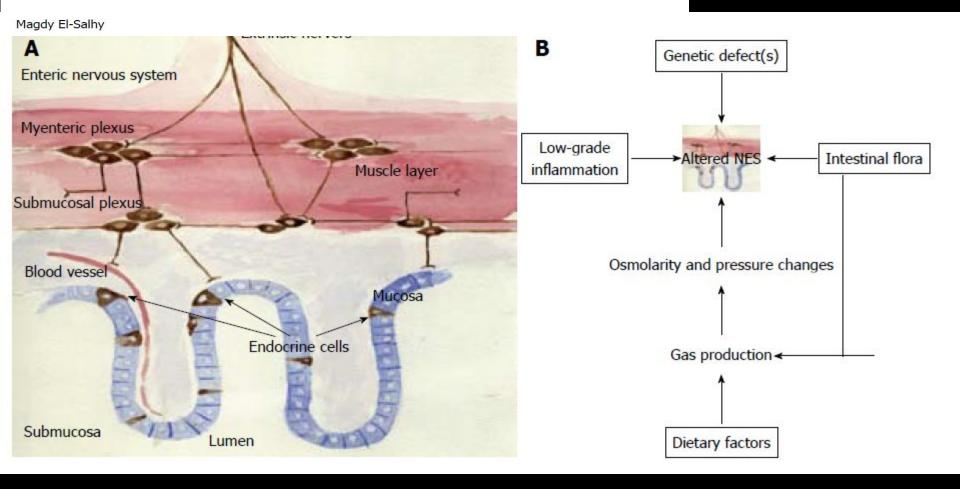
СРК. РИМСКИЕ КРИТЕРИИ III

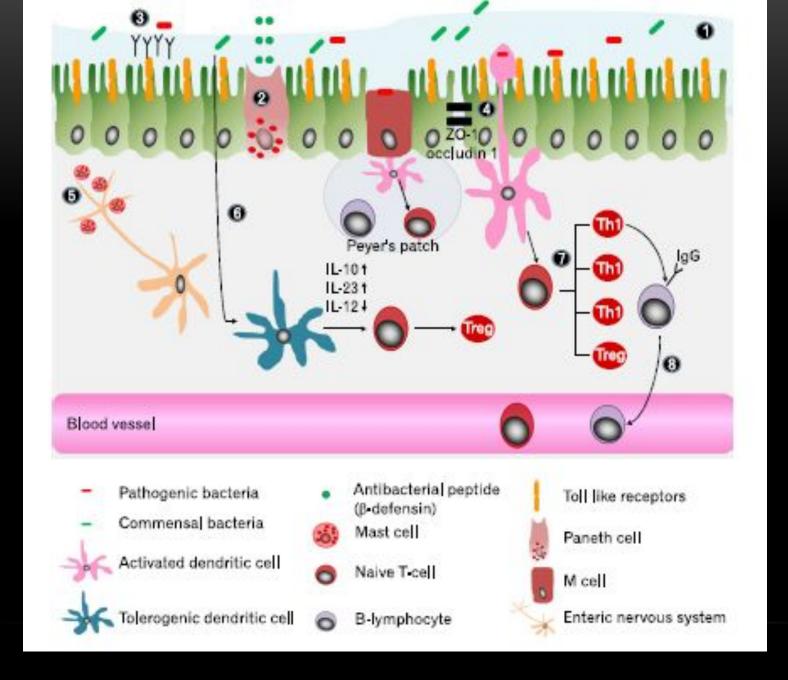
- Рецидивирующая абдоминальная боль или дискомфорт по крайней мере 3 дня в месяц за последние 3 месяца, ассоциирующаяся с 2 или более признаками из следующих:
- 1. Улучшение после дефекации;
- 2. Начало, ассоциирующееся с изменением частоты стула;
- 3. Начало, ассоциирующееся с изменением формы (внешнего вида) стула

КЛИНИЧЕСКИЕ ОСОБЕННОСТИ БОЛИ ПРИ СРК

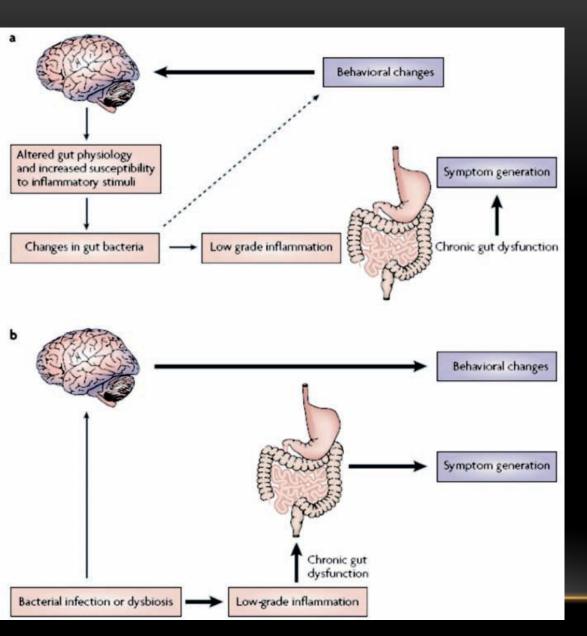
- Сочетается с изменением частоты дефекации.
- Сочетается с изменением консистенции кала.
- Усиливается после еды.
- Уменьшается после дефекации или отхождения газов.
- Не возникает ночью.
- Усиливается при беспокойстве, эмоциональном
- возбуждении.
- Исчезает в момент отдыха, отпуска.
- У женщин усиливается во время менструации.

РИМСКИЕ КРИТЕРИИ III ПОДТВЕРЖДАЮЩИЕ КРИТЕРИИ

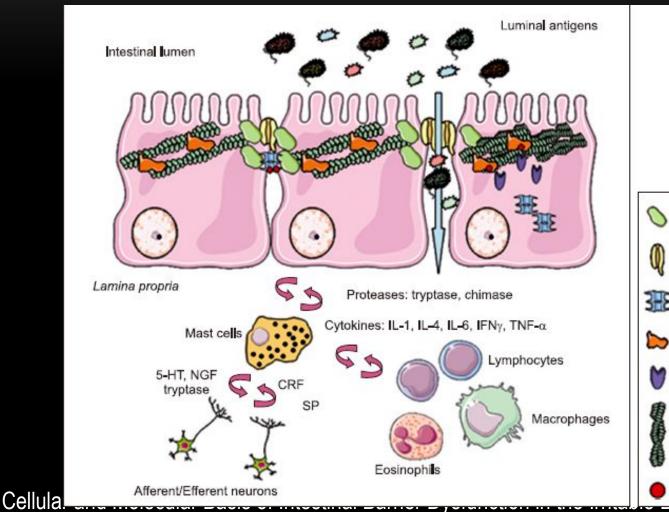

Ненормальная частота стула
 3 и менее испражнений в неделю
 Более 3 испражнений в день

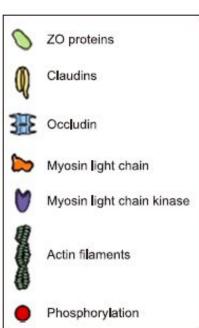

Ненормальная форма стула
шероховатый/твердый стул или
Расслабленый / водянистый стул
Натуживание при дефекации
 Безотлагательность или чувство неполного опорожнения, выделение слизи и вздутие

Online Submissions: http://www.wjgnet.com/esps/wjg@wjgnet.com doi:10.3748/wjg.v18.i37.5151 World J Gastroenterol 2012 October 7; 18(37): 5151-5163 ISSN 1007-9327 (print) ISSN 2219-2840 (online) © 2012 Baishideng. All rights reserved.


GUIDELINES FOR CLINICAL PRACTICE

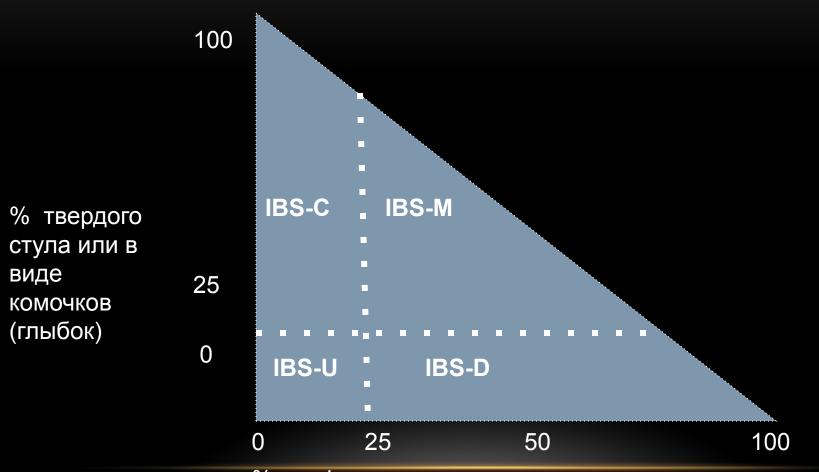
Irritable bowel syndrome: Diagnosis and pathogenesis




Katiraei P et al . Comprehensive neuro-immuno-gastroenterology approach to IBS, 2011

Микробно- гастроинтестинальное взаимодействие – формирование феномена висцеральной гиперчувствительности.

ПОВЫШЕННАЯ КИШЕЧНАЯ ПРОНИЦАЕМОСТЬ ПРИ СРК



Cristina Martнnez*, Ana Gonzбlez-Castro*, Marнa Vicario*,†, and Javier Santos*,†Gut and Liver, Vol. 6, No. 3, July 2012, pp. 305-315

КЛАССИФИКАЦИЯ

СУБТИПЫ СРК ПО ПРЕОБЛАДАЮЩЕЙ ФОРМЕ СТУЛА

% неоформленного или водянистого стула

IBS-C – CPK с запором; IBS-D – CPK с диареей; IBS-H – CPK неклассифицированный; IBS-M - CPK смешанный

Время кишечного транзита & Бристольская шкала 80 40 Время кишечного транзита (часы) 0 Показатели Бристольской

шкалы

БРИСТОЛЬСКАЯ ШКАЛА КАЛА

Большое время транзита (100 часов)

Короткое время транзита (10 часов)

Тип 1	Отдельные твердые комки, как орехи, трудно продвигаются	• • • •
Тип 2	В форме колбаски, но комковатый	9
Тип 3	В форме колбаски, но с ребристой поверхностью	SAL CO
Тип 4	В форме колбаски или змеи, гладкий и мягкий	
Тип 5	Мягкие маленькие шарики с ровными краями	
Тип 6	Рыхлые частицы с неровными краями, кашицеобразный стул	
Тип 7	Водянистый, без твердых частиц	Полностью жидкий

ДИАГНОСТИЧЕСКИЙ

- Симптомы СРК
- Отсутствие угрожающих признаков
- Возраст менее 50 лет

Отсутствие **диареи**

Низкая частота паразитарных Заболеваний

Низкая частота целиакии

Может рассматриваться проведение простых тестов (КАК, СОЭ, ТСК) и/или диагностика, основанная на симптоматике

КАК – клинический анализ крови; ТСК – тест на скрытую кровь; СОЭ – скорость оседания эритроцитов

* Где необходимо—например, там, где существует высокая частота целиакии, паразитарных заболеваний и воспалительных заболеваний кишечника или лимфоцитарного колита

ДИФФЕРЕНЦИАЛЬНЫЙ ДИАГНОЗ - 1

• Целиакия

Хроническая диарея

Начало в детском/подростковом возрасте

• Непереносимость лактозы

Вздутие, урчание живота, диарея, ухудшение после приема молока

• Воспалительные заболевания кишечника

Наличие симптомов тревоги

Ректальное кровотечение

Признаки воспаления по данным копрологического/гистологического исследования

• Колоректальный рак

Возраст старше 50 лет

Симптомы тревоги

ДИФФЕРЕНЦИАЛЬНЫЙ ДИАГНОЗ - 2

- Лимфоцитарный/коллагеновый колит
- Глистно-паразитарная инвазия
- Синдром избыточного бактериального роста в тонкой кишке
- Дивертикулярная болезнь кишечника
- Эндометриз
- Цикличность абдоминальных болей
- Воспалительные заболевания урогенительного тракта
- Рак яичника
- Коморбидность с другими заболеваниями

РИМСКИЕ КРИТЕРИИ III ПРЕПАРАТЫ ДЛЯ ДОМИНИРУЩЕГО СИМПТОМА

- Абдоминальная боль спазмолитики
- Диарея лоперамид, алосетрон
- Запоры лактулоза, тегасерод
- Дополнительно трициклические антидепрессанты, ингибиторы обратного захвата серотонина
- Препараты сопровождения про- и пребиотики

Спазмолитики и антидепрессанты в лечении СРК

56 исследований 3725 пациентов

Спазмолитики эффективны в купировании абдоминальной боли (в сравнении с плацебо)

RR 1.49; 95% CI 1.25 to 1.77; P < 0.0001; NNT = 5

Антидепрессанты также эффективнее плацебо в отношении купирования абдоминальной боли

RR 1.49; 95% CI 1.05 to 2.12; P = 0.03; NNT = 5

Cochrane Database Syst Rev. 2011 Aug 10;(8):CD003460.

Ruepert L, Quartero AO, de Wit NJ, van der Heijden GJ, Rubin G, Muris JW.

СПАЗМОЛИТИКИ

• Миотропные спазмолитики

уменьшают мышечный тонус путем прямого воздействия на гладкомышечные клетки

- Неселективные
- Селективные

• Нейротропные спазмолитики

блокируют процесс передачи нервных импульсов в вегетативных ганглиях и нервных окончаниях, стимулирующих гладкомышечные клетки

• антихолинергические препараты или М-холиноблокаторы

ПРОБИОТИКИ

Пробиотики - живые микроорганизмы, которые при применении в адекватных количествах вызывают улучшение здоровья организма-хозяина.

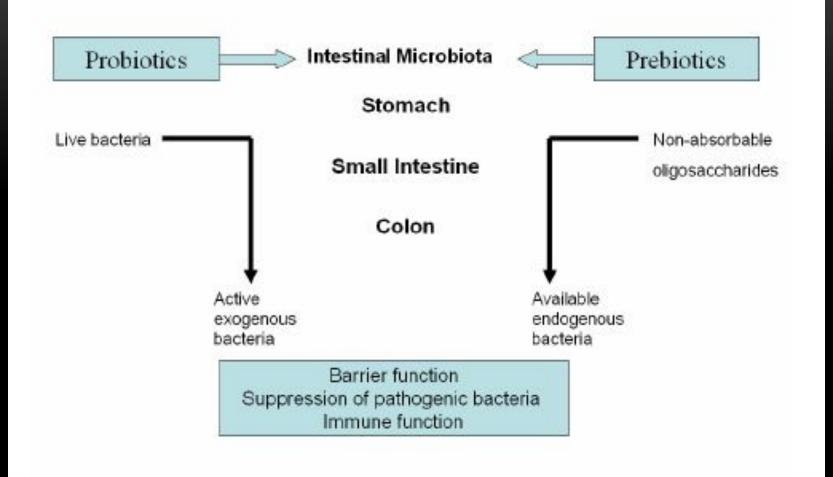
FAO/WHO (2001) Expert Consultation http://www.fao.org/es/ESN/Probio/probio.htm

Требования к пробиотикам:

- •Высокая жизнеспособность и биологическая активность
- •Антагонизм по отношению к условно-патогенной и патогенной флоре
- •Устойчивость к физико-химическим факторам (кислотность, осмотический шок, температура, действие желчных кислот и т.п.)
- •Антибиотикоустойчивость
- •Безопасность

Микроорганизмы - пробиотики

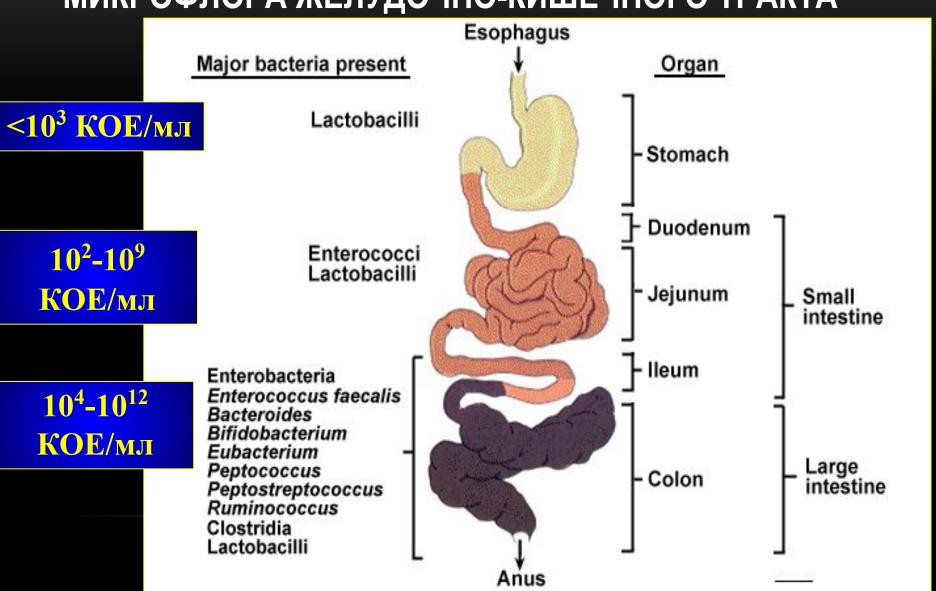
L. paracasei


L. plantarum

L. rhamnosus

L. reuteri

Microorganisms considered as probiotics (Holzapfel et al. 2001).


Lactobacillus	Bifidobacterium	Other lactic acid	Non-lactic acid	
		bacteria	bacteria	
L. acidophilus	B. adolescentis	Enterococcus faecalis	Bacillus cereus var. toyoi	
L. amylovorus	B. animalis	Enterococcus faecium	Escherichia coli Nissle 1917	
L. casei	B. bifidum	Lactococcus lactis	$Propionibacterium\ freudenreichii$	
L. crispatus	B. breve	Leuconostoc mesenteroides	Saccharomyces cerevisiae	
L. delbrueckii	B. infantis	Pediococcus acidolactici	Saccharomyces boulardii	
subsp. bulgaricus				
L. gallinarum	B. lactis	$Streptococcus\ thermophilus$		
L. gasseri	B. longum	Sporolactobacillus inulinus		
L. johnsonii				

Harish K and Varghese T.
Calicut Medical Journal 2006;4(4):e3
Review

Probiotics in humans – evidence based review

МИКРОФЛОРА ЖЕЛУДОЧНО-КИШЕЧНОГО ТРАКТА

- Продукция короткоцепочных жирных кислот (уксусной, пропионовой, масляной)
- При расщеплении полисахаридов и гликопротеидов внеклеточными гликозидазами микробного происхождения образуются моносахариды (глюкоза, галактоза и т.д
- Стимуляция локального иммунитета
- Адаптация системного иммунного ответа
- Колонизационная резистентность
- Обеспечение и контроль моторной активности кишечника, посредством продукции монокарбоновых (короткоцепочечных) жирных кислот

МЕТОДЫ ДИАГНОСТИКИ НАРУШЕНИЙ МИКРОФЛОРЫ КИШЕЧНИКА

Определение видов микроорганизмов с помощью ПЦР-диагностики.

Информативность исследования высока только в отношении ограниченного круга условнопатогенных и патогенных микроорганизмов и вирусов.

Высокая стоимость.

Метод хромато-масс-спектрометрии позволяет детектировать в исследуемых образцах маркеры – компоненты микробной клетки – широкого спектра микроорганизмов собственной и инородной микробиоты человека. Недостатки: требование многократных исследований для анализа широкого диапазона микроорганизмов, особенности компьютерной обработки и др., большая стоимость исследования, зависящая от технического оборудования.

МЕТОДЫ ДИАГНОСТИКИ НАРУШЕНИЙ МИКРОФЛОРЫ КИШЕЧНИКА

Hindawi Publishing Corporation Interdisciplinary Perspectives on Infectious Diseases Volume 2008, Article ID 597603, 26 pages doi:10.1155/2008/597603

Review Article

Application of Sequence-Dependent Electrophoresis Fingerprinting in Exploring Biodiversity and Population Dynamics of Human Intestinal Microbiota: What Can Be Revealed?

Geert Huys, Tom Vanhoutte, and Peter Vandamme

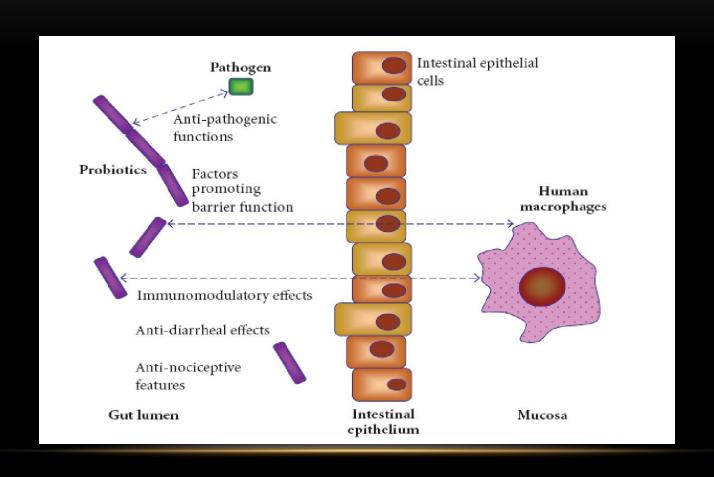
Largest offormors)	Primer designation	Sequence (5'-3')*	Target regio	
		Domain level		
	HDA1 ^b	ACTOCTAOGGGAGGCAGCAGT	V2-V3-168 V3-168 rD	
	HDA2 ^b	GTATTACCGCGGCTGCTGGCAC		
	F357	CCTACGGGAGGCAGCAG		
Bacteria .	518R	ATTACCGCGGCTGCTGG		
É	339P°	CTCCTACGGGAGGCAGCAG	V3-V4-168	
	788R	GGACTACCAGGGTATCTAA		
5	U968-F	AACGCGAAGAACCTTAC	V6-V8-16	
	L1401-R	CGGTGTGTACAAGACCC		
		Genus (group) level		
	FD1	AGAGTTTGATCCTGGCTCAG	16S rDNA	
Bacteroides	RbacPre	TCACCGITGCCGGCGTACTC		SEQUENCE-DEPENDENT ELECTROPHORESIS (SDE) –
	Bfr-F	CTGAACCAGCCAAGTAGCG	16S rDNA	
	Bfr-R	CCGCAAACTTTCACAACTGACTTA		НОВЫЙ МЕТОД МОЛЕКУЛЯРНОЙ МИКРОБНОЙ
	Bif164-f	GGGTGGTAATGCCGGATG	16S rDNA	ЭКОЛОГИИ ЧЕЛОВЕКА. ПРИМЕНЕНИЕ ТЕХНОЛОГИИ
	Bif662-r	CCACCGTTACACCGGGAA		
<u>Бунювала гнага</u>	g-Bifid-F	CTCCTGGAAACGGGTGG	16S rDNA	ПОЗВОЛЯЕТ ОЦЕНИТЬ ДОМИНИРУЮЩУЮ
	g-Bifid-R	GGTGTTCTTCCCGATATCTACA		МИКРОБНУЮ ФЛОРУ С ВЫСОКИМ УРОВНЕМ
	ForTal	CGTCGCCTTCTTCTTCGTCTC	transaldola	
	RevTal	CTTCTCCGGCATGGTGTTGAC		НАДЕЖНОСТИ, В ДИНАМИКЕ.
Helicobacter	658f	TGGGAGAGGTAGGTGGAAT	16S rDNA	
	1067R	GCCGTGCAGCACCTGTTTTCA		
Enterococcus	Ent1017F	CCTTTGACCACTCTAGAG	16S rDNA	
	Ent1263R	CTTAGCCTCGCGACT		
	Lac1	AGCAGTAGGGAATCTTCCA	16S rDNA	
	Lac2	ATTYCACCGCTACACATG		
	27f (also Bact-0011f)	AGAGTTTGAT(C/T)(A/C)TGGCTCAG	16S rDNA	
racaonen no group	Lab-0677r	CACOGCTACACATGGAG		
	Lab-0159f	GGAAACAG(A/G)TGCTAATACCG	16S rDNA	
g	Uni-0515-r	ATCGTATTACCGCGGCTGCTGGCA		
	Lab-0159f	GGAAACAG(A/G)TGCTAATACCG	16S rDNA	
	Lab-0677r	CACCGCTACACATGGAG		
		Species group level		
	g-Bact-F	ATAGCCTTTCGAAAGRAAGAT	16S rDNA	
2000 2000 6000	0	CCAGTATCAACTGCAATTTTA		
subgroup ^e	Bact 596F	TCAGTTGTGAAAGTTTGCG	16S rDNA	
	Bact 826R	GTRTATOGCMAACAGOGA		
	Bact 531F	ATACGGAGGATCCGAGCGTTA	16S rDNA	
	Bact 766R	CTGTTTGATACCCACACT		
Clostridium phylogenetic	Erec 688F	GCGTAGATATTAGGAGGAAC	16S rDNA	
dusters XI and XIVa ^f	Erec 841R	TGCGTTWGCKRCGGCACCG		

НОВОЕ НАПРАВЛЕНИЕ МОЛЕКУЛЯРНОЙ ЭКОЛОГИИ ПОЗВОЛЯЕТ ОЦЕНИТЬ МЕТАБОЛИЧЕСКУЮ ФУНКЦИЮ МИКРОБИОТЫ, ОЦЕНИТЬ СОСТОЯНИЯХ, В ДИНАМИКЕ

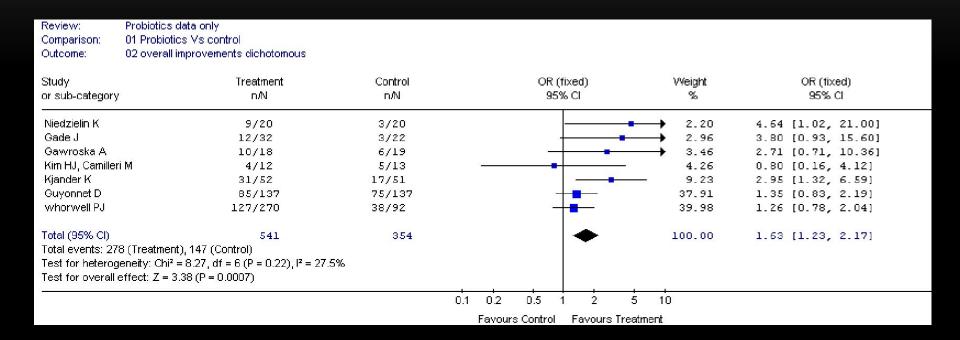
Component ^a	Administered component
p	Levan-type exopolysaccharides, levan, inulin and FOS
p	GOS and FOS
p	Difructose anhydride III (DFA III)
P	Lactobacillus rhamnosus DR20
P	Lactobacillus paracasei F19
P	VSL#3® (probiotic mixture of eight strains)
P	Bifidobacterium longum (Bifina®) and yogurt with Bifidobacterium animalis DN-173 010
y	Lactobacillus delbrueckii subsp. bulgaricus and Streptococcus thermophilus
p, P	Inulin or B. longum (Bifina®)
pP	Inulin-containing probiotic yogurts
pP	GOS-containing probiotic yogurt
p, P, pP	GOS and/or Bifidobacterium lactis Bb-12
p, P, pP	Lactulose and/or Saccharomyces boulardii
0	Black tea
o, op, oP	Isoflavones and FOS or B. animalis DN-173 010

^ap: prebiotic; P: probiotic; pP: synbiotic; y, yogurt; o: other.

^bAll studies used DGGE as SDE method except in [105], where TTGE was used.

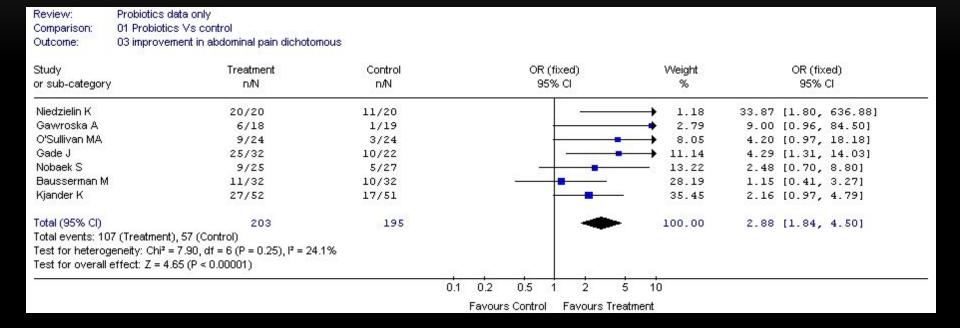

ДЕЙСТВИЕ ПЕРОРАЛЬНОЙ ПРОБИОТИЧЕСКОЙ ТЕРАПИИ:

- •конкуренция с патогенной и условно-патогенной микрофлорой;
- •взаимодействие с энтероцитами;
- •иммуномодулирующий эффект.
- •Пробиотические штаммы лактобактерий (LGG, L. acidophylus), Ent. faecium, Str. thermophylus усиливают выработку Th1 и IL-1, INF-α, стимулируют фагоцитарную активность нейтрофилов и выработку SIgA.
- •Бифидобактерии (B. longum, B. bifidum, B. Infantis) оказывают стимулирующее воздействие на Th-reg и , соответственно, выработку TGF-β, IL-10, способствуя формированию иммунологической толерантности, со снижением синтеза IgE и усилением синтеза SIgA.

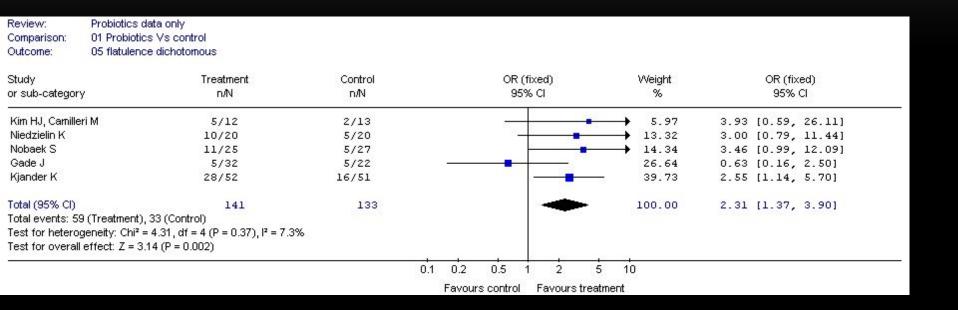

Boirivant M, Strober W. The mechanism of action of probiotics.

Curr Opin Gastroenterol. 2007 Nov;23(6):679-92

ЭФФЕКТЫ ПРОБИОТИЧЕСКОЙ ТЕРАПИИ



ПРОБИОТИКИ В ЛЕЧЕНИИ СРК


Nourieh Hoveyda, Carl Heneghan, Kamal R Mahtani, Rafael Perera, Nia Roberts and Paul Glasziou A systematic review and meta-analysis: probiotics in the treatment of irritable bowel syndrome BMC Gastroenterology 2009, 9:15 doi:10.1186/1471-230X-9-15

ПРОБИОТИКИ В ЛЕЧЕНИИ СРК

Nourieh Hoveyda, Carl Heneghan, Kamal R Mahtani, Rafael Perera, Nia Roberts and Paul Glasziou A systematic review and meta-analysis: probiotics in the treatment of irritable bowel syndrome BMC Gastroenterology 2009, 9:15 doi:10.1186/1471-230X-9-15

ПРОБИОТИКИ В ЛЕЧЕНИИ СРК

Nourieh Hoveyda, Carl Heneghan, Kamal R Mahtani, Rafael Perera, Nia Roberts and Paul Glasziou A systematic review and meta-analysis: probiotics in the treatment of irritable bowel syndrome BMC Gastroenterology 2009, 9:15 doi:10.1186/1471-230X-9-15

Штаммы:

- 3 бифидо
- 5 лакто
- •1 стрептококк

Bifidobacterium lactis W51
Bifidobacterium lactis W52
Bifidobacterium longum W108
Lactobacillus acidophilus W22
Lactobacillus paracasei W20
Lactobacillus plantarum W21
Lactobacillus salivarius W24
Lactococcus lactis W19
Streptococcus thermophilus W69

Штаммы:

- 2 бифидо
- 6 лакто

Bifidobacterium bifidum W23
Bifidobacterium lactis W51
Lactobacillus acidophilus W37
Lactobacillus acidophilus W55
Lactobacillus paracasei W20
Lactobacillus plantarum W62
Lactobacillus rhamnosus W71
Lactobacillus salivarius W24

Названия штаммов в пробиотиках РиоФлора теперь соответствуют классификации НИИ микроорганизмов и клеточных культур им. Лейбница (Германия), ведущего учреждения в области микробиологии в мире.

НЕ ВСЕ ШТАММЫ ОДИНАКОВЫЕ! ОТЛИЧИЕ РИОФЛОРЫ ИММУНО НЕО ОТ РИОФЛОРЫ БАЛАНС НЕО

- ✓ Свойства характерные для одного пробиотического штамма не всегда характерны для другого
- ✓ Близкородственные бактериальные штаммы одного и того же вида, с одинаковым наименованием, обладают различными физиологическими эффектами.
- ✓РиоФлора Баланс Нео и РиоФлора Иммуно Нео разработаны для конкретных показаний (ААД и поддержка иммунной системы), и хотя на первый взгляд они близки по составу, они содержат разные штаммы.

РиоФлора Баланс

Bifidobacterium bifidum W23

Bifidobacterium lactis W51

Lactobacillus acidophilus W37

Lactobacillus acidophilus W55

Lactobacillus paracasei W20

Lactobacillus plantarum W62

Lactobacillus rhamnosus W71

Lactobacillus salivariuW24s

Всего 3 одинаковых штамма!

РиоФлора Иммуно

Outcome

DISTENSION

B. Animalis (25,29,34)

B. Longum (31,36,39)

L. Acidophilus (25,29,31,36,39)

L. Bulgaricus - S. Salivarius ssp.

Thermophilus (25,31,32,34,39)

B. Breve (36,37,39)

Boulardii (19,20)

PAIN

ORIGINAL PAPERS

Effect of probiotic species on irritable bowel syndrome symptoms: A bring up to date meta-analysis

Mar

ría Ortiz-Lucas ¹ , Aurelio Tobias ² , Pablo Saz ³ and Juan José Sebastián ⁴	
Table IV. Meta-analysis of the efficacy of probiotics species for treating IRS pat	ients

n

3

3

2

3

5

5

analysis of the efficacy of probiotics species for treating IBS patients. The results refer to the presence

of any probiotic species for treating each IBS symptom

3

393 154 73

B. Longum (31,32,34,39)

L. Acidophilus (25,29,31,32,36,39) L. Bulgaricus (25,31,34,36,39)

S. Boulardii (19,20) S. Salivarius ssp. Thermophilus (25,31,32,34,36,39)

B. Infantis - L. Casei - L. Plantarum (36,39)

B. Animalis (25,29,34) B. Breve (36,37,39) B. Infantis - L. Casei - L. Plantarum (36,39)

202 328 443

137 543

No. of patients

393

154

73

102

228

137

443

-0.31 (-0.67; 0.05)

0.18 (-0.16; 0.51) -0.28 (-0.56; 0.00)

0.00 (-0.20; 0.20)

-0.45 (-0.77; -0.13)

-0.53 (-1.00; -0.06)

-0.19 (-0.90; 0.53)

-0.17 (-0.51; 0.18)

-0.06 (-0.67; 0.55)

-0.08 (-0.39; 0.24)

Overall estimates

SMD (95% CI)

-0.05 (-0.24; 0.15)

-0.34 (-0.66; -0.02)

-0.31 (-0.77; 0.15)

-0.48 (-0.91; -0.06)

-0.31 (-0.61; -0.01)

0.0 (1.0;2; 0.612) 0.0 (0.3;2; 0.858) 0.0 (0.1;1; 0.749) 67.6 (6.2;2; 0.046)

38.2 (6.5;4; 0.167)

69.1 (3.2;1; 0.072)

49.7 (2.0;1; 0.159)

Heterogeneity F (O;df;p)

0.0 (0.1;2; 0.943)

0.0 (0.1;2; 0.943)

0.0 (0.1;1; 0.763)

49.5 (5.9;3; 0.115)

42.3 (8.7;5; 0.123)

59.4 (9.6;4; 0.043)

0.0 (0.2;1; 0.652)

50.5 (10.1;5; 0.072)

ORIGINAL PAPERS

Effect of probiotic species on irritable bowel syndrome symptoms: A bring up to date meta-analysis

María Ortiz-Lucas¹, Aurelio Tobias², Pablo Saz³ and Juan José Sebastián⁴

STOOL FREQUENCY B. Breve (36,37,39) B. Infantis - B. Longum - L. Acidophilus - L. Bulgaricus - L. Casei - L. Plantarum - S. Salivarius ssp. Thermophilus (36,39)	3 2	154 73	0.13 (-0.49; 0.74) -0.27 (-0.73; 0.19)	47.2 (7.6;4; 0.108) 0.0 (0.0;1; 0.966)
STOOL CONSISTENCY B. Breve - B. Infantis - B. Longum - L. Acidophilus - L. Bulgaricus - L. Casei - L. Plantarum - S. Salivarius ssp. Thermophilus (36,39)	2	73	-0.04 (-0.50; 0.42)	0.0 (1.0;1; 0.326)
FLATULENCE B. Breve (36,37,39) B. Infantis - L. Casei - L. Plantarum (36,39) B. Longum – L. Acidophilus - L. Bulgaricus - S. Salivarius ssp. Thermophilus (31,36,39)	3 2 3	154 73 102	-0.42 (-0.75; -0.10) -0.60 (-1.07; -0.13) -0.61 (-1.01; -0.21)	0.0 (1.9;2; 0.389) 0.0 (0.9;1; 0.332) 0.0 (1.0;2; 0.621)

Probiotics and irritable bowel syndrome

Riitta Korpela* and Leena Niittynen

Medical Nutrition Physiology, Pharmacology, Institute of Biomedicine, University of Helsinki, Helsinki, Finland

Table 1. Randomized controlled trials of probiotics on IBS

Probiotic	Number of subjects	Duration	Result	Reference
B. infantis 35624	77	8 weeks	Pain, IBS score, bowel movement difficulty ↓	7
	362	4 weeks	Abdominal pain, IBS score, distension, incomplete evacuation, straining, flatulence ↓	8
B. animalis DM 173010	274	6 weeks	Stool frequency in subjects with <3 stools/week ↑	10
B. bifidum MIMBb75	122	4 weeks	IBS symptoms, pain, discomfort, distension, bloating, urgency, digestive disorder ↓	9
L. plantarium 299V	60	4 weeks	Flatulence ↓	11
	20	4 weeks	IBS score, abdominal pain ↓	13
	12	4+4 weeks	↔	18
L. rhamnosus GG	24	8+8 weeks	↔	12
	50 children	6 weeks	Abdominal distention ↓	14
	104 children	4 weeks	Treatment success ↑; abdominal pain frequency ↓	15
	141 children	12 weeks	Treatment success ↑; abdominal pain ↓	17
L. acidophilus-SDC 2012, 201	3 40	4 weeks	Treatment success †; abdominal pain and discomfort ↓	16
L. acidophilus	61	2 weeks	++	19
L. reuteri ATCC 55730	54	6 months	↔	20
L. plantarum MF1298	16	3+3 weeks	IBS sum score ↑	21
S. boulardii	67	4 weeks		22
	35	30 days	↔	23
Streptococcus faecium	54	4 weeks	Clinical improvement ↑	24

БЛАГОДАРЮ ЗА ВНИМАНИЕ