Случайные величины и их характеристики

Понятие случайной величины

- Во многих задачах теории вероятности удобнее оперировать не понятием случайного события, для которого существуют только две возможности: оно может произойти или не произойти в результате опыта, а понятием так называемой случайной величины.
- Величина называется случайной, если при проведенном испытании может принимать различные значения, причем заранее не известно, какие именно.
 - Например, при подбрасывании игрального кубика может выпасть любая грань с числом точек от 1 д

Классификация случайных величин

- Если возможный диапазон значений случайной величины представляет собой конечное или счетное множество, она называется дискретной случайной величиной.
 - <u>Например</u>, количество выпавших очков при подбрасывании игральной кости.
- Если эти значения заполняют целиком некоторый интервал — непрерывной случайной величиной.
 - <u>Например</u>, время прихода студента на лекцию.

Классификация случайных величин

Дискретные непрерывные конечные бесконечные

Количество выпавших очков при подбрасывании игрального кубика.

Количество бросков игрального кубика при подбрасывании его до выпадения «шестерки».

Способы задания

- Если случайная величина Х дискретна, то она определяется своими значениями х₁, х₂... и их вероятностями р₁, р₂....
- Если случайная величина **непрерывна**, то эта величина X определяется областью своих значений и функцией распределения F(x), выражающей вероятность того, что X принимает какое-либо значение (безразлично какое именно), меньшее, чем x, т. е. F(x)=P(X<x). Производная этой функции F'(x) называется функцией плотности вероятности или дифференциальной функцией распределения и обозначается f(x).

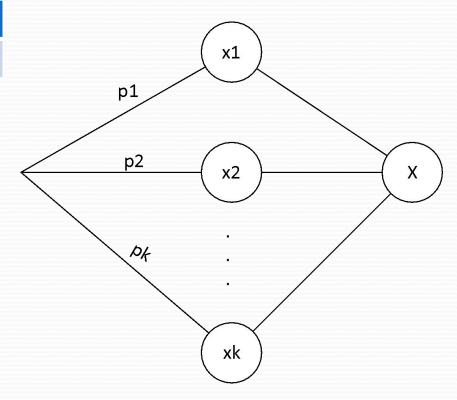
Дискретная случайная величина Способы задания

Закон распределения

X	X1	X2	 xk
P	pı	p 2	 pk

$$\sum p_i = 1$$

Граф распределения:



Основные характеристики случайных величин

Характеристики положения

- Математическое ожидание
- Мода
- Медиана

Характеристики рассеивания

- Дисперсия
- Среднее квадратическое отклонение

Математическое ожидание

- Математическое ожидание это ожидаемый выигрыш игрока (историческое).
- Математическое ожидание это среднее значение случайной величины с учетом вероятностей.

$$M[X] = \sum x_i p_i$$

Свойства математического ожидания:

- 1. Математическое ожидание от константы равно константе M[C] = C
- $2. M[CX] = C \cdot M[X]$
- 3. $M[X \pm Y] = M[X] \pm M[Y]$

Характеристики положения

Мода – это такое значение случайной величины, для которого вероятность максимальна

$$M_{J} = px_{t}, \qquad t = \max$$

Медиана – это такое значение случайной величины, для которого процесс почти равновозможно закончится до него и после него, т.

e.

$$\begin{cases} \sum_{i=1}^{k} p_i \geq \frac{1}{2} \\ \sum_{i=t}^{k} p_i \geq \frac{1}{2} \end{cases}$$

Дисперсия

 Характеристикой, показывающей масштаб отклонения случайной величины от математического ожидания, является дисперсия математическое ожидание квадрата отклонения от среднего:

$$D[X] = M \left[\left(X - M[X] \right)^2 \right] = \sum \left(x_i - M[X] \right)^2 p_i$$

Свойства дисперсии:

- 1. Дисперсия от константы равна нулю: D[C] = 0
- $D[CX] = C^2 \cdot D[X]$
- 3. $D[X \pm Y] = D[X] + D[Y]$
- $4. \quad D[X] = M[X^2] M[X]^2$

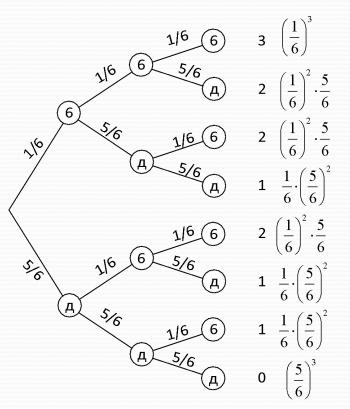
Среднее квадратическое отклонение

 Среднее квадратическое отклонение показывает величину самого отклонения случайной величины от математического ожидания и вычисляется как

$$\sigma = +\sqrt{D[X]}$$

Пример

 Игральная кость подбрасывается три раза. Случайная величина X={количество выпавших шестерок}.
 Построить закон распределения этой случайной величины и найти все характеристики.



X	0	1	2	3
P	$\left(\frac{5}{6}\right)^3$	$3 \cdot \frac{1}{6} \left(\frac{5}{6}\right)^2$	$3 \cdot \left(\frac{1}{6}\right)^2 \cdot \frac{5}{6}$	$\left(\frac{1}{6}\right)^3$

Характеристики положения

X	o	1	2	3
P	$\left(\frac{5}{6}\right)^3 = \frac{125}{216}$	$3 \cdot \frac{1}{6} \left(\frac{5}{6}\right)^2 = \frac{75}{216}$	$3 \cdot \left(\frac{1}{6}\right)^2 \cdot \frac{5}{6} = \frac{15}{216}$	$\left(\frac{1}{6}\right)^3 = \frac{1}{216}$

$$M[X] = 0 \cdot \frac{125}{216} + 1 \cdot \frac{75}{216} + 2 \cdot \frac{15}{216} + 3 \cdot \frac{1}{216} = \frac{75 + 30 + 3}{216} = \frac{108}{216} = \frac{1}{2}$$

$$M_{\kappa} = 0$$
, $p. \max(i) = \frac{125}{216}$

$$M_{\mathcal{E}} = 0, \quad ... \begin{cases} \frac{125}{216} \ge \frac{1}{2} \\ \frac{125}{216} + \frac{75}{216} + \frac{15}{216} + \frac{1}{216} = 1 \ge \frac{1}{2} \end{cases}$$

Характеристики рассеивания

X	0	1	2	3
P	$\left(\frac{5}{6}\right)^3 = \frac{125}{216}$	$3 \cdot \frac{1}{6} \left(\frac{5}{6}\right)^2 = \frac{75}{216}$	$3 \cdot \left(\frac{1}{6}\right)^2 \cdot \frac{5}{6} = \frac{15}{216}$	$\left(\frac{1}{6}\right)^3 = \frac{1}{216}$

Первый способ :
$$D[X] = \sum (x_i - M[X]) \cdot p_i$$

$$D[X] = \left(0 - \frac{1}{2}\right)^{2} \cdot \frac{125}{216} + \left(1 - \frac{1}{2}\right)^{2} \cdot \frac{75}{216} + \left(2 - \frac{1}{2}\right)^{2} \cdot \frac{15}{216} + \left(3 - \frac{1}{2}\right)^{2} \cdot \frac{1}{216} =$$

$$= \frac{1 \cdot 125 + 1 \cdot 75 + 9 \cdot 15 + 25 \cdot 1}{216 \cdot 4} = \frac{125 + 75 + 135 + 25}{216 \cdot 4} = \frac{360}{216 \cdot 4} = \frac{36 \cdot 10}{36 \cdot 6 \cdot 4} = \frac{5}{12}$$

Второй способ :
$$D[X] = M[X^2] - M[X]^2$$

$$M[X] = 0^2 \cdot \frac{125}{216} + 1^2 \cdot \frac{75}{216} + 2^2 \cdot \frac{15}{216} + 3^2 \cdot \frac{1}{216} = \frac{75 + 4 \cdot 15 + 9 \cdot 1}{216} = \frac{144}{216} = \frac{36 \cdot 4}{36 \cdot 6} = \frac{2}{3}$$

$$D[X] = \frac{2}{3} - \left(\frac{1}{2}\right)^2 = \frac{8 - 3}{12} = \frac{5}{12}$$

$$\sigma[X] = +\sqrt{D[X]} = +\sqrt{\frac{5}{12}} \approx 0.65$$