•Модуль 1

- Основные понятия и методы теории информатики и кодирования.
 Сигналы, данные, информация.
 Общая характеристика процессов сбора, передачи, обработки и накопления информации

Лекция 3. Логические основы ЭВМ

Содержание:

Связь между алгеброй логики и двоичным кодированием

Логические высказывания

Операции над высказываниями

Алгебра высказываний

Алгебра логики

Основные законы логики

Связь между алгеброй логики и двоичным кодированием.

Математический аппарат алгебры логики удобен для описания функционирования аппаратных средств компьютера, поскольку основной системой счисления в компьютере является двоичная, в которой используются цифры 1 и 0, значений логических переменных тоже: "1" и "0"

Историческая справка

1666 год - немецкий ученый Лейбниц попытался перевести законы мышления (формальную логику) из словесных форм, полных неопределенностей, в математику, где отношения между объектами или высказываниями определяются в виде математических соотношений.

В 1847 год- Буль написал статью на тему «Математический анализ логики»

В 1854 году Буль развил свои идеи в работе «Исследование законов мышления»

Понятие высказывания

Простое высказывание – некоторое повествовательное предложение, которое может быть либо истинно, либо ложно, но не то и другое одновременно

Обозначается маленькими латинскими буквами $a_{r}, b_{r}, c_{r}, ...$

Высказывания, получаемые из простых с помощью грамматических связок «и», «или», «не», «тогда и только тогда», «либо...либо...», «если ...то...» называются составными или формулами

Обозначаются большими латинскими буквами A_r B_r C_r ...

Тождественная истина и тождественная ложь

Формула *A*, всегда истинная, называется тождественно истинной формулой или тавтологией, *A*=1

Формула B, всегда ложная, называется тождественно ложной формулой, B=0

Рассматривая высказывания, мы абстрагируемся от их смысла, нас интересует их истинность или ложность

Операции над высказываниями

- •Дизъюнкция V
- •Конъюнкция &
- •Отрицание 🗆 а
- **●Импликация** →
- Эквивалентность ⇔
- Жегалкинское сложение #

Значение каждой логической операции описывается таблицей истинности

Дизъюнкция a V b (логическое сложение)

Запись читается «а дизъюнкция б»

Дизъюнкция двух слагаемых ложна тогда и только тогда, когда ложны оба слагаемых

Соответствует

Соответствует
союзу «ИЛИ»

а	b	a V b
0	0	0
0	1	1
1	0	1
1	1	1

умножение)

Запись читается «а конъюнкция б»

Конъюнкция двух сомножителей ложна тогда и только тогда, когда ложны хотя бы один из них Соответствует союзу «И»

а	b	a & b
0	0	0
0	1	0
1	0	0
1	1	1

Отрицание (инверсия 7)

Запись читается «не а»

Отрицание лжи есть истина, отрицание истины есть исть ложь

Соответствует
частице «НЕ»

а	□ a
0	1
1	0

Импликация а→ b

Запись читается «а импликация б» или «из а следует б»

Из лжи следует все, что угодно, а из истины только истина

Соответствует «если а, то б»

а	b	$a \rightarrow b$
0	0	1
0	1	1
1	0	0
1	1	1

Эквивалентность а \Leftrightarrow b

Запись читается «а эквивалентно б»

Эквивалентность истинна тогда и только тогда, когда значение обеих переменных совпадают

Соответствует «тогда и только тогда»

а	b	a ⇔ b
0	0	1
0	1	0
1	0	0
1	1	1

Запись читается «а жегалкинское сложение б»

Жегалкинское сложение истинно тогда и только тогда, когда значения переменных различны

Соответствует союзу «ИЛИ,ИЛИ», «ЛИБО»

а	b	a ⊕ b
0	0	0
0	1	1
1	0	1
1	1	0

Алгебры для работы с высказываниями

Используются две алгебры для работы над высказываниями

• Алгебра высказываний

• Алгебра логики

Алгебра высказываний

Операции дизъюнкция, конъюнкция, отрицание, импликация и эквивалентность составляют сигнатуру алгебры высказываний

$$A = <\{0, 1\}, \lor, \&, -, \rightarrow, \Leftrightarrow>$$

Алгебра Буля (алгебра логики)

Алгебраическая система, содержащая в качестве сигнатуры логическое умножение, логическое сложение и отрицание, которые позволяет производить тождественные преобразования логических выражений, и множество {0, 1} в качестве носителя, называется алгеброй Буля (алгеброй логики)

$$A6 = <\{0, 1\} \cdot ,+,->$$

Логические функции

В алгебре высказываний и алгебре логики используются только логические переменные, которые принимают значения либо 0 (ложь), либо 1 (истина)

Функции, которые определены на этих переменных и принимают значения 0 или 1, также называются логическими, или булевыми

Порядок выполнения логических операций

Инверсия - ¬

Конъюнкция - & или ^

Дизъюнкция - У

Импликация –

Эквивалентность -

Для изменения порядка выполнения логических операций используются круглые скобки.

Например: $D = \gamma (A \lor B \land C)$

Построение таблицы сложного выражения

Пример построения таблицы истинности для сложного (составного) логического выражения: $D = -A \land (B \lor C)$

Необходимо спланировать таблицу, то есть установить число строк и столбцов таблицы

При определении числа строк необходимо перебрать все возможные сочетания логических значений 0 и 1 исходных выражений A, B и C, из которых формируется заданное сложное логическое выражение

При добавлении третьего аргумента записываются первые 4 строки таблицы, сочетания с значением третьего аргумента равным 0, а затем записываются эти же 4 строки, но с значением третьего аргумента, равным 1

Для трех аргументов в таблице оказывается 8 строк

Таблица истинности сложного выражения

A	В	C	٦A	В У С	¬ A ^ (B [∨] C)
0	0	0	1	0	0
0	0	1	1	1	1
0	1	0	1	1	1
0	1	1	1	1	1
1	0	0	0	0	0
1	0	1	0	1	0
1	1	0	0	1	0
1	1	1	0	1	0

Таблица истинности сложного выражения

Построить таблицу истинности для формулы

$$F(x1, x2, x3) = (x1 → x2) → □x3$$

x1 x2 x3	x1 → x2	□ x 3	$(x1\rightarrow x2)\rightarrow \Box x3)$
0 0 0	1	1	1
0 0 1	1	0	0
010	1	1	1
0 1 1	1	0	0
100	0	1	1
101	0	0	1
110	1	1	1
111	1	0	0

Таблица истинности сложного выражения

Дана функция $f(x, y, z) = \neg (X = > \neg Y) = > Z$ Построить ее таблицу истинности

XYZ	X => ¬Y	¬ (X => ¬Y)	¬ (X=>¬Y) => Z
0 0 0	1	0	1
0 0 1	1	0	1
0 1 0	1	0	1
0 1 1	1	0	1
1 0 0	1	0	1
1 0 1	1	0	1
1 1 0	0	1	0
1 1 1	0	1	1

Основные законы логики

- □ Закон идемпотентности: A ^ A= A; A ∨ A=
- □ Двойное отрицание (инволюция): ¬(¬А) =
- □ Закон исключения третьего: А^{∨¬} A=I (всегда истина)
- □ Закон противоречия: А ^ ¬ А= 0 (всегда ложь)
- Закон коммутативности:

$$A^{\vee} B = B^{\vee} A;$$

 $A \wedge B =$

B ^ A

Основные законы логики (продолжение)

- Дистрибутивность (распределение):
 - □Умножения относительно сложения:

$$(A \lor B) \land C = (A \land C) \lor (B \land C)$$

и наоборот:

$$(A \land B) \lor (B \land C) = B \land (A \lor C)$$

□ Сложения относительно умножения:

$$\Box A^{\vee}B^{\wedge}C = (A^{\vee}B)^{\wedge} (A^{\vee}C)$$

Основные законы логики (продолжение)

Ваконы де Моргана:

$$\neg(A \land B) = \neg A \lor \neg B$$

 $\neg(A \lor B) = \neg A \land \neg B$

□ Законы работы с константами 0 и 1:

$$A \lor I = I \qquad 0 \lor I = I$$

$$A \land I = A \qquad 0 \land I = 0$$

$$A \land 0 = 0$$

$$B \land I = B$$

Законы де Моргана

$$\neg(A \land B) = \neg A \lor \neg B$$

A	В	¬(А^В)	$\neg A \land \neg B$
0	0	1	1
0	1	1	1
1	0	1	1
1	1	0	0

$$\neg (A \lor B) = \neg A \land \neg B$$

A	В	$\neg (A^{\vee}B)$	¬А^¬ В
0	0	1	1
0	1	0	0
1	0	0	0
1	1	0	0

Формализация логических высказываний

Союзы и частицы естественного языка	Операции алгебры высказыван ий	Примеры
аиб	a&b	Сегодня ветрено и идет дождь
а или б	aVb	Сегодня ясная погода, или сегодня идет дождь
а либо б	a ⊕ b	Сегодня ветрено, либо идет дождь
не а	a	Неверно, что сегодня идет дождь Сегодня пасмурно Сегодня безветренно Сегодня нет дождя
либо а, либо б	a ⊕ b	Либо сегодня идет дождь, либо ясная погода
или а, или б	a ⊕ b	Или сегодня ветрено, или дождливо

Формализация логических высказываний

а тогда и только тогда, когда б	a⇔ b	Ветрено бывает тогда и только тогда, когда идет дождь		
а достаточное условие для б	$oldsymbol{a} o oldsymbol{b}$	Сегодняшний ветер - достаточное условие для сегодняшнего дождя		
если а, то б	$m{a} ightarrow b$	Если сегодня ветер, то сегодня пойдет дождя		
а необходимое	$b \rightarrow a$	Сегодняшний ветер - необходимое условие для сегодняшнего дождя		
а когда б	b → a	Дождь идет когда дует ветер		

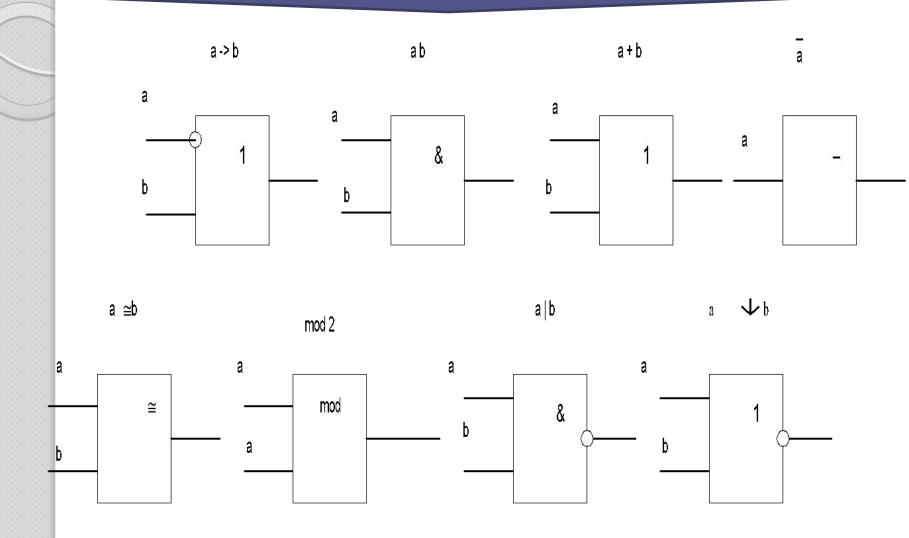
Алгоритм формализации высказываний

- выделить из составного высказывания простые высказывания и обозначить их латинскими буквами
- 2. построить дерево синтаксического разбора, в котором каждой вершине соответствует логическая связка (операция), а концевым вершинам простые высказывания
- 3. записать логическую формулу путем обхода дерева с учетом структуры дерева и старшинства логических операций

Представление логических функциональных элементов

- единицей 1, если он реализует логическое сложение
- знаком конъюнкции «&», если реализует логическое умножение
- M2, если соответствует сложению по модулю два (жегалкинскому сложению)
- · «≡», если реализует функцию эквивалентности

Представление элементов



Метод построения логических схем

- Построим таблицу истинности для рассматриваемой функции
- Построим совершенную ДНФ (т.е. логическую сумму наборов, на которых функция задана как истинная)
- Упростим СовДНФ с помощью законов алгебры логики
- Приведем функцию к виду, удобному для реализации в заданном базисе
- Проведем анализ функции и построим схему из функциональных элементов

Пример I

Построить схему для функции f(x1, x2, x3, x4), истинной на наборах 1, 3, 5, 10 и 14 на функциональных элементах И - НЕ

$$CДH\Phi =$$

$$\frac{-}{x_{1}} \frac{-}{x_{2}} \frac{-}{x_{3}} \frac{-}{x_{4}} + \frac{-}{x_{1}} \frac{-}{x_{2}} \frac{-}{x_{3}} \frac{-}{x_{4}} \frac{-}{x_{1}} \frac{-}{x_{1}} \frac{-}{x_{2}} \frac{-}{x_{3}} \frac{-}{x_{1}} \frac{-}{x_{1}} \frac{-}{x_{2}} \frac{-}{x_{1}} \frac{-}{x_{1}} \frac{-}{x_{1}} \frac{-}{x_{1}} \frac{-}{x_{1}} \frac{-}{x_{1}} \frac{-}{x_{1}} \frac{-}{x_{1}} \frac$$

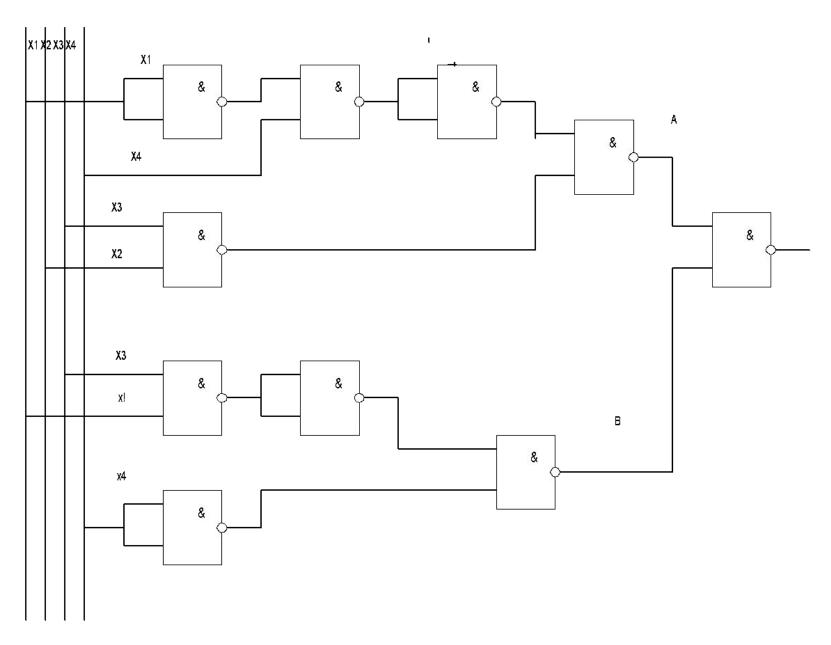
Пример I

$$MДH\Phi = \square x1 \square x2 x4 + \square x1 \square x3 x4 +$$
 $x1 x3 \square x4 = \square x1 x4(\square x2 + \square x3) +$
 $x1 x3 \square x4 =$
 $= (x1 + x4 + (x2 + x3)) + (x1 + x3 + x4) = A + B$

 $A = x1 + x4 + (x2 + x3) = x1 + x4 + (x2 + x3)^{2} = (x1 + x4) | (x2 + x3) = x1 + x4 + (x2 + x3)^{2} = (x1 + x4) | (x2 + x3) = x1 + x4 + (x2 + x3)^{2} = (x1 + x4) | (x2 + x3) = x1 + x4 + (x2 + x3)^{2} = (x1 + x4) | (x2 + x3) = x1 + x4 + (x2 + x3)^{2} = (x1 + x4) | (x2 + x3)^{2} = (x1 + x4)^{2} | (x1$

 $B = \overline{x1} | x3 + \overline{x4} = (\overline{x1} | x3) | (\overline{x4}) = ((x1|x3)|(x1|x3)) | (x4|x4)$

= ((x1+x4)|(x1+x4)|(x2+x3)) = (((x1+x1)|x4)|((x1+x1)|x4))((x2+x3))



Выводы:

Математический аппарат алгебры логики в которой используются значения логических переменных 1 и 0 удобен для описания функционирования аппаратных средств компьютера так как основной системой счисления в компьютере является двоичная

Логические утверждения (логические константы) - это конкретные частные утверждения, заведомо истинные или ложные

Для логических операций существуют таблицы истинности

Выполнение логических операций регламентируется аксиомами и теоремами

