

Техническое обслуживание и диагностика тормозного оборудования грузовых вагонов

Проверка технического состояния и работы тормоза автоматического производится с помощью типовой передвижной установки ВТВ.061.00.000

Подготовка к испытанию

Для проведения испытания на каждом тормозном цилиндре вагона устанавливается манометр. Для контроля времени на всех этапах испытания используется секундомер.

Тормозная магистраль вагона через рукав Р2 подсоединяется к установке, на головку противоположного соединительного рукава вагона устанавливается заглушка, концевые краны открыты. Воздухораспределитель вагона должен быть включен.

Проверка плотности пневматической тормозной системы вагона

Для проверки плотности тормозной системы вагона необходимо открыть кран ВНЗ и зарядить тормозную систему вагона сжатым воздухом до давления 5,4 ±0,1кгс/см²(положение крана №II) Контроль зарядки тормозной системы вагона производится по времени зарядки, которое должно быть не менее 6 мин. После зарядки закрыть кран ВН2 и проверить плотность пневматической тормозной системы вагона. Падение давления по манометру не должно превышать 0,1 кгс/см² в течение 5 мин.

Проверка действия тормоза вагона

В случае падения давления сжатого воздуха в тормозной магистрали свыше 0,1 кгс/см² в течение 5 мин производится обмыливание соединительных элементов пневмосистемы вагона и устраняется выявленная утечку воздуха.

Для проверки действий тормоза воздухораспределитель вагона устанавливается на равнинный режим, а режимный валик переключить на средний режим торможения (при композиционных колодках).

Затем повышаем давление сжатого воздуха до зарядного (положение крана №II), после чего тормоз должен полностью отпустить за время не более 70 сек.

После зарядки тормозной системы вагона снижаем давление сжатого воздуха в тормозной магистрали до 3,5 ±0,1 кгс/см² (производим полное служебное торможение-положение крана №V), при этом:

- а) тормоз вагона должен прийти в действие
- б) давление в тормозном цилиндре должно быть в пределах 1,2-1,6 кгс/см²
- в) падение установившегося в ТЦ давления, не должно превышать 0,1 кгс/см² за 3 мин.

Выполняем ряд пошаговых действий:

Переводим ручку крана машиниста в положение №IV, повысив давление сжатого воздуха в тормозной магистрали вагона до 4,5±0,1 кгс/см², при этом происходит полный отпуск тормоза.

Заряжаем тормозную систему вагона сжатым воздухом до давления 5,4±0,1 кгс/см² (положение крана №II)

Переключаем воздухораспределитель на горный режим (режимный валик находится на среднем режиме). Под упор авторежима устанавливаем металлическую прокладку толщиной 45 -0,1 мм.

Производим полное служебное торможение путем снижения давления в тормозной магистрали с 5,4 кгс/см² до 3,5 ±0,1 кгс/см² (положение крана №V), при этом:

- а) тормоз должен прийти в действие и установившееся давление сжатого воздуха в томозном цилиндре должно быть в пределах от 3,0 до 3,4 кгс/см²
- б) выход штока тормозного цилиндра должен находиться в пределах от 50 до 100 мм.

Далее проверяем положение рычагов тормозной рычажной передачи: а) ведущий горизонтальный рычаг со стороны штока тормозного цилиндра должен располагаться перпендикулярно к оси тормозного цилиндра или иметь наклон от перпендикулярного положения до 10° в сторону тележки;

б) вертикальные рычаги тележек должны иметь наклон от 5 до 25° от вертикали в сторону надрессорной балки тележки

Затем повышаем давление сжатого воздуха в тормозной магистрали до 5,4 ±0,1 кгс/см² (переводим кран в положение крана №II), при этом должен произойти полный отпуск тормоза.

По окончании испытаний переключаем воздухораспределитель на равнинный режим, извлекаем прокладку из-под упора авторежима и производим проверку действие выпускного клапана воздухораспределителя.

Техническое обслуживание и руководство по эксплуатации тормоза автоматического

С целью установления пригодности тормоза к эксплуатации в течении всего срока эксплуатации необходимо производить проверку его технического состояния, в процессе которой проверяется соответствие деталей и узлов тормоза техническим требованиям, выявлять, заменять и ремонтировать детали, находящиеся в неисправном состоянии.

Запрещается:

- 1) Эксплуатировать тормоза, имеющие детали или сборочные единицы, находящиеся в предельном состоянии, которое может вызвать отказ в работе тормоза или угрожать безопасности движения;
- 2) Допускать к работе лиц, не изучивших правил техники безопасности, устройство и правила эксплуатации тормозов
- При техническом обслуживании в процессе эксплуатации тормозов выполнять следующие требования:
- 1) проверить износ и состояние узлов и деталей. Детали. Которые не обеспечивают нормальную работу тормоза-заменить. Категорически запрещается использование нестандартных осей. На оси должны быть установлены шайбы и шплинты;
- 2) проверять правильность включения режимов воздухораспределителя;

Техническое обслуживание и руководство по эксплуатации тормоза автоматического

- 3) проверять соответствие выхода вилки авторежима загрузке вагона; надежность крепления контактной планки на опорной балки тележки;
- 4) следить за правильностью регулирования ТРП и работой авторегулятора, выходом штока тормозных цилиндров в пределах установленных норм;
- 5) следить за надежным креплением приборов тормозного оборудования и исправностью поддерживающих и предохранительных устройств;
- 6) следить, чтобы оси. Расположенные вертикально, были направлены головками вверх, а установленные горизонтально-обращены головками в одну сторону;
- 7) упор вилки авторежима должен находиться в средней зоне контактной планки опорной балки тележки: расстояние от центра головки до края контактной планки не должно быть менее 50 мм;
- 8) систематически производить смазку шарнирных соединений тормозной рычажной передачи, трущихся поверхностей и деталей привода стояночного тормоз и привода авторегулятора;
- 9) проверять, чтобы в отпущенном положении тормоза вал с червяком был выведен из зацепления с червячным сектором

Устройство и работа тормоза стояночного

Привод стояночного тормоза изготовлен в соответствии с требованиями ОСТ 24.290.01. Стояночный тормоз предназначен для торможения стоящих вагонов, находящихся на путях в пунктах погрузки и выгрузки, в отстое и на уклонах.

Стояночный тормоз работает следующим образом:

Перемещением штурвала влево до упора червяк с валом входит в зацепление с червячным сектором

Устройство и работа тормоза стояночного

и фиксирует его в этом положении поворотом рукоятки вниз-рабочее положение. Штурвал вращают по часовой стрелке, при этом червячный сектор поворачивается вокруг оси и перемещает влево тяги посредством рычага и шток тормозного цилиндра. Кинематика перемещения элементов тормозной рычажной передачи происходит так же, как и при работе автоматического тормоза.

Для осуществления быстрого отпуска. Поворотом рукоятки вверх освобождают червяк с валом из зацепления с червячным сектором, отводя его за штурвал вправо до упора. При этом происходит отпуск тормоза, под действием пружины тормозного цилиндра рычажная передача возвращается в отпускное положение.

Все трущиеся поверхности должны быть смазаны графитной по ГОСТ 3333-55 или смазкой универсальной среднеплавкой УС по ГОСТ 1033-73.

Технический осмотр и ремонт привода стояночного тормоза производить при плановых видах ремонта, при этом детали и узлы его должны быть очищены, отремонтированы, смазка заменена.

